Illumina Webinar 2012.7.12

Topics

- 1. DNAメチル化解析の意義
- 2. 網羅的DNAメチル化解析の概要
- 3. 網羅的メチル化解析例とその簡単なデータ処理
- 4. 領域個別のメチル化解析

酵素的DNAメチル化

遺伝子プロモーター領域CpGアイランドのメチル化は 遺伝子サイレンシングをもたらす

メチル化CpG部位

癌抑制遺伝子の不活化機構として重要

なぜDNAメチル化解析を行うのか?

- ・後天的な(環境による)変化
- ・ 遺伝子発現(表現型)が異なっている原因 かもしれない
- ・ 病態マーカーとして有用かもしれない

DNAメチル化異常の特徴

トランスクリプトーム・プロテオームとの違い

- プロモーター領域のメチル化は、その時たまたま発現していないことではなく、 どんな時でも「発現し得ない」ことを示す。
- 2. 一部細胞での高発現により、全体像が影響されることがない。
- 3. 細胞の状態や環境により簡単には変わらない。
- 4. RNAや蛋白質と異なり、DNAは化学的に安定である。サンプル入手で有利。

ゲノム異常との違い

- 1. 非がん部に非常にたくさん蓄積しうる。
- 2. 異常誘発には特定の慢性炎症が重要である。
- 3. 誘発要因に応じて、特徴的な遺伝子に誘発される。
- 4. がん部での異常が非常に多く、その分、随伴変化も多い。
- 5. 脱メチル化剤で解除できうる。

[Ushijima and Asada, Cancer Sci, 101:300, 2010]

アルキル化剤反応性予測マーカー: MGMT のメチル化

(From Esteller and Herman, Oncogene, 2004)

40 glioma cases

DNAメチル化(CIMP)の神経芽細胞腫予後マーカーとしての有用性

[Abe, Cancer Res, 65:828, 2005; Abe, Cancer Lett, 247:253, 2007]

Topics

- 1. DNAメチル化解析の意義
- 2. 網羅的DNAメチル化解析の概要
- 3. 網羅的メチル化解析例とその簡単なデータ処理
- 4. 領域個別のメチル化解析

DNAメチル化解析の原理

Bisulfite 反応によるシトシンの変換

網羅的DNAメチル化解析の選択肢

	MethylC-seq	MeDIP-seq, MethylCap-seq, MBD-seq	Reduced representation MeDIP-CGI bisulfite microarray sequencing		Infinium -27K	Infinium -450K	
Genomic DNA	5 µg	0.3-5 µg	0.05 µg	5 µg	0.5-1 µg		
Assay	Bisulfite conversion	Capture with antibody or MeCP2 or MBD	Bisulfite conversion	Capture with antibody	Bisulfite conversion		
Readout		Sequence		Array			
Resolution	1 bp	100-1,000 bp	1 bp	100-1,000 bp	1 bp		
Theoritical coverage	~1	00%	~10% (CpG)	~70% (CGI)	~0.1% (CpG)	~2% (CpG)	
Cost	~\$20 K	~\$2	2 K	~\$0.5 K			
Species		All		Customization available	Human		
Ease of use	Hard	Medi	um		Easy		
Conclusion	Good standard	Good all-rounder	Good	for CGIs	Good for promoters	Good all-rounder	

(Beck et al. 2010を元にYamashitaが大幅改訂)

Illumina HumanMethylation450 BeadChip

450K (450,000) probes 95% CpG islands 12 samples / slide 41,300 yen / sample human

[From Illumina]

HumanMethylation450 BeadChipの特徴

- 1. 網羅性 プロモーター領域以外、CpG island以外もカバー
- 2. 定量性,再現性 10%のメチル化の違いも検出し得ると期 待できる
- 3. 簡便性 (機器さえ揃っていれば)プロトコールが整備され ていて扱いやすい。得られるデータがシンプル。
- 4. その他 FFPEサンプルにも対応、アノテーションが充実 (転写開始点からの距離以外)

ゲノム網羅的DNAメチル化解析の再現性

MeDIP-CGI microarray

 $R^2 = 0.962$

HumanMethylation450 R² = 0.993

[Yamashita et al. unpublished]

異なるプラットホームでは異なる領域が計測可能

HOXA5 promoter

UCSC Genome Browser

Topics

- 1. DNAメチル化解析の意義
- 2. 網羅的DNAメチル化解析の概要
- 3. 網羅的メチル化解析例とその簡単なデータ処理
- 4. 領域個別のメチル化解析

まずは図で様子を見る

- Illumina GenomeStudioもかなりよいが
- UCSC Genome Browser (http://genome.ucsc.edu/)で他のデータと比べるのがおすすめ
- Importに必要なBedファイルはExcelで作製可能

	A1	: 🛛 🛇	(fx trac	k type=bedG	raph name	="AGS_Beta" d	escription="A	AGS_Beta" colo	r=102,0,102			
- 2	A	В	C	D	E	F	G	Н				
1	track type=bec	Graph name="A	GS_Beta" desc	ription="AGS_B	eta" color=10	02,0,102						
2	chr16	53468112	53468121	0.3608217								
3	chr3	37459206	37459215	0.9382988								
4	chr3	171916037	171916046	0.8856235								
5	chr1	91194674	91194683	0.8744467								
6	chr8	42263294	42263303	0.8944484								
7	chr14	69341139	69341148	0.694135			===	7127 71 -	r =	やけてために		
8	chr16	28890100	28890109	0.912966			記の	読み込みエフーを超けるにのに				
9	chr8	41167802	41167811	0.7912668								
10	chr1	230560793	230560802	0.8947818					• - •			
11	chr15	23034447	23034456	0.00394956			•	Textフ フ	ァイルに	コンバートした時。		
12	chr9	139997924	139997933	0.8280725				- (二口)		- रक्त = ज		
13	chr19	54695678	54695687	0.3309445				「丁日の	り青丸で	竹毛認		
14	chr6	25282779	25282788	0.9378259			•	時たち	ストゥナッグ	も(空堺)けギロズ		
15	chr3	128902377	128902386	0.0685074				HAT (K OD)	anera ll			
16	chr12	124086477	124086486	0.03259799			埋める					
17	chr2	23913414	23913423	0.9129239								
10		454000057	154000000	0.0000400								
	染色体	位置	位置+1	0 Bet	a値							

発現量とメチル化が関係のあるプロモーター領域は限られている

[Yamashita et al. manuscript in preparation]

CpGアイランドやプロモーターでなくてもメチル化サイ レンシングはあり得る

HSC39 cells

[Yamashita et al. manuscript in preparation]

網羅的DNAメチル化解析によるマーカー同定の例(1)

- 食道扁平上皮癌(ESCC)
- 手術前に転移の有無について情報を得るためのマーカー同定
- ・ 転移有りと転移なし原発巣との比較(合計3組の比較)
- MeDIP + Agilent Human CpG island array (24万プローブ)
- ・ メチル化の差が0.4(Me value, 最小0-最大1)以上のプローブを 抽出

数百プローブ

3個以上のプローブで連続して差があるものに限定
 52領域 ExcelではIF関数で可能
 個別領域のメチル化解析によるアレイ結果の検証
 25領域
 マーカーのscreeningとvalidationへ

Data of MeDIP-CGI microarray analysis in genomic regions around *PAX6* CGIs

[Gyobu, Ann Surg Oncol, 18:1185, 2011]

Quantitative Methylation Analysis of Candidate CGIs in Screening Set and Construction of ROC Curve

[Gyobu, Ann Surg Oncol, 18:1185, 2011]

実はこのマーカー領域はHM450ではプローブが存在しな かった

PAX6 promoter

網羅的DNAメチル化解析によるマーカー同定の例(2)

- 胃癌(GC)
- 手術前に転移の有無について情報を得るためのマーカー同定
- 転移巣と転移なし原発巣との比較
- Illumina HumanMethylation450
- 差ではなく、転移なし原発巣でメチル化レベルが低く、転移巣 でメチル化レベルが高い領域を抽出

MLN vs Primary GC without LNM

Validated one CpG site (cg06436185)

HM450の結果をあらかじめより確かなものにできないか?

HumanMethylation450 R² = 0.993

- 複数回実験
 塩基多型データの活用 (Illumina)
- 3. Detection P-valueの活 用 (Illumina)
- エラー傾向プローブの
 除去

HumanMethylation450の再現性はintensityに依存する

• MCF7_demo • S1 • S12

Intensity500以下を示したプローブの結果は無かったことにする

Estimation of the probe errors and their histogram

- Repeated measurements are available for 10 individuals.
- The within-sample variation is estimated by use of "analysis of variance" (ANOVA).

[Rehnberg et al. manuscript in preparation]

薬剤投与によるメチル化変化結果(上位20プローブ)

AGS+5-aza-dC SH-SY5Y+CDDP

		1	
	erroi	: diff	
cg06647	7360 0.033	8 0.884	
cg26446	5133 0.031	0.868	
cg16066	505 0.370	0.790	
cg25720	930 0.455	5 0.679	
cg00040	566 0.045	5 0.628	
cg07296	5841 0.290	0.622	
cg18443	3450 NZ	0.562	
cg23476	5209 0.230	0.500	
cg25376	5032 0.232	2 0.487	
cg19871	348 0.178	8 0.471	
cg02076	5747 0.134	0.466	
cg11822	2772 NZ	0.458	
cg05393	8828 0.243	0.446	
cg18825	597 0.231	0.433	
cg13769	609 0.072	2 0.433	
cg06813	3250 0.159	0.432	
cg04054	303 0.226	5 0.427	
cg07565	5150 0.193	0.423	
cg06255	5004 0.100	5 0.415	
cg03562	2350 0.291	0.410	メチル化変化の
_			大半はエラー

	error	diff
cg14341177	0.044	0.894
cg01618928	0.064	0.709
cg03281139	0.071	0.698
cg19095568	0.060	0.683
cg09220326	0.049	0.678
cg16402006	0.050	0.677
cg04016485	0.046	0.657
cg20455854	0.044	0.649
cg09373676	0.041	0.643
cq20695611	0.052	0.642
2		
cg18764836	NA	0.640
cg18764836 cg05255994	NA 0.036	0.640 0.635
cg18764836 cg05255994 cg08635395	NA 0.036 0.042	0.640 0.635 0.627
cg18764836 cg05255994 cg08635395 cg13321688	NA 0.036 0.042 0.072	0.640 0.635 0.627 0.626
cg18764836 cg05255994 cg08635395 cg13321688 cg09312135	NA 0.036 0.042 0.072 0.021	0.640 0.635 0.627 0.626 0.624
cg18764836 cg05255994 cg08635395 cg13321688 cg09312135 cg14251216	NA 0.036 0.042 0.072 0.021 0.249	0.640 0.635 0.627 0.626 0.624 0.603
cg18764836 cg05255994 cg08635395 cg13321688 cg09312135 cg14251216 cg11481582	NA 0.036 0.042 0.072 0.021 0.249 0.040	0.640 0.635 0.627 0.626 0.624 0.603 0.600
cg18764836 cg05255994 cg08635395 cg13321688 cg09312135 cg14251216 cg11481582 cg02927821	NA 0.036 0.042 0.072 0.021 0.249 0.040 0.031	0.640 0.635 0.627 0.626 0.624 0.603 0.600 0.594
cg18764836 cg05255994 cg08635395 cg13321688 cg09312135 cg14251216 cg11481582 cg02927821 cg20519665	NA 0.036 0.042 0.072 0.021 0.249 0.040 0.031 0.051	0.640 0.635 0.627 0.626 0.624 0.603 0.600 0.594 0.587
cg18764836 cg05255994 cg08635395 cg13321688 cg09312135 cg14251216 cg11481582 cg02927821 cg20519665 cg22950831	NA 0.036 0.042 0.072 0.021 0.249 0.040 0.031 0.051 0.035	0.640 0.635 0.627 0.626 0.624 0.603 0.600 0.594 0.587 0.580

[Rehnberg et al. manuscript in preparation]

Biologicallyに意味があるDNAメチル化変化の解析

- TSS200/CpG island領域
 - ・ 発現との強い関係が既知
- ・ 狭い領域内での連続性
- ・ 発現解析結果との統合
 - ・ プラットホームが違えば煩雑
 - Excelで行う場合は遺伝子名で揃える。VLOOKUP関 数を使えば何とかなる
- GeneOntology解析
 - 何はともあれDAVID (http://david.abcc.ncifcrf.gov/)

Topics

- 1. DNAメチル化解析の意義
- 2. 網羅的DNAメチル化解析の概要
- 3. 網羅的メチル化解析例とその簡単なデータ処理
- 4. 領域個別のメチル化解析

DNAメチル化 (個別領域) 解析方法の選択

Flexibility

Check Point of MSP

- Primer location
- Quantity and quality of template
- PCR conditions

メチル化CpGの位置と発現量の関係(原則)

CpGアイランドの位置を調べる

NCBI Map ViewerでCpG アイランドを表示させる

Bisulfite 処理

- ✓ Fragmentation of genomic DNA
 - BamHI or Sonication
 - Adequate fragmentation

✓ Our protocol

- 1. 3.1M sodium bisulfite, 6mM hydroqinone, pH 5.0
- 2. $[95^{\circ}C, 30 \sec \Leftrightarrow 50^{\circ}C, 15 \min] 15 \text{ cycles} (x 50^{\circ}C 16 \text{ hours})$
- 3. Desulfonation and purification using Spin column (Zymo Research)
 - pH
 - High concentration bisulfite, high temperature
 - Commercial kits (Invitrogen or Zymo)

遺伝子転写開始点近傍のMSPプライマー

ヒトGATA2遺伝子

CG site on primer 3' end =1, others = 1 to 4

PCR Template DNAはBisulfite処理により 大半が失われる

- 14,000 copies (50 ng) → 700-1,700 copies (5-12%)
- Inevitable (Any kit!)
- 10 copies for DNA detection / 1 MSP reaction

 = 200 copies (100 cells) before bisulfite treatment
 = 0.6 ng (human, mouse) / 1 MSP reaction
 Our protocol: DNA 1 μg (40-80 PCRs) = 12-25 ng / 1 MSP

Annealing Temperature

Primer for unmethylated DNA

• Gradient PCR system is useful.

Excessive Number of PCR Cycles

- 0.1 % of methylated DNA can be amplified.
 0.1% methylated in cancer??
- Minimum cycles to obtain visible bands with positive control samples
- 4 cycles were added for test samples (total of 30-36 cycles).

5-Aza-dC 処理による脱メチル化

Stability of 5-aza-dC in PBS

Re-expression by demethylation

5-Aza-dC の処理濃度

メチル化サイレンシングされていた遺伝子は5-Aza-dC処 理により<mark>大幅に</mark>遺伝子発現が増大する

[Nakajima et al. IJC 2009]

Quantification of DNA Methylation

- Reliability
- Methylation level as marker (Cancer diagnosis, risk)

	Number of molecules	Low level methylation	Precision	Flexibility	Ease of use	Cost	
Bisulfite sequencing	×	Δ	\bigtriangleup	O	0	×	
Combined bisulfite and restriction analysis (COBRA)	×	0	Δ	\bigtriangleup	Ø	Ø	
Pyrosequencing	×	0	0	0	0	Δ	
MethyLight	O	Ø	O	0	0	\triangle	
Real-time methylation- specific PCR (SYBR Green I)	O	Ø	Ø	0	0	0	
MSP	×	×	×	0	O	Ô	

Principle of Real-time MSP

Real-time MSP needs DNA

[Quantification of high copy number of DNA is stable.]

[PCR Template DNA is lost by bisulfite treatment.]

	DNA needed	DNA before bisulfite treatment
1% precision	100 copies	more than 2,000 copies (6 ng)
0.1% precision	1,000 copies	more than 20,000 copies (60 ng)

Condition of Real-time MSP

Quantitative Methylation Analysis Revealed Epigenetic Field for Cancerization

✓ These findings showed the presence of an epigenetic field for cancerization in gastric mucosa.

Bisulfite Sequencing

- Gold standard
- Methylation pattern

PCR Bias

Number of Analyzed Clones in Bisulfite Sequencing

------ **1** - p

Binomial distribution (p = 0.5, n = 10)

Number of DNA Molecules in Bisulfite Sequencing

100 copies for methylation pattern / 1 reaction
 = 2,000 copies (1000 cells) before bisulfite treatment
 = 6 ng (human, mouse) / 1 reaction

• Nonspecific products of PCR

• Duplication of clones

参考書

羊土社 実験医学別冊

エピジェネティクス実験プロトコール DNAメチル化網羅的解析については古い

マイクロアレイデータ統計解析プロトコール

Acknowledgment

National Cancer Center Research Institute

Toshikazu Ushijima **Tohru Niwa** Hideyuki Takeshima Yasuyuki Shigematsu Ken Gyobu Yasunori Matsuda Kosuke Hosoya **Monali Lahoti** Satomi Takahashi