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RNA-seq

(Wang 2009 with modifications) 

RNA-seq is a revolutionary tool for transcriptomics using deep-
sequencing technologies.

HiSeq2000@NIBB 

genome



RNA-seq is unraveling complexities of 
eukaryotic transcriptomes in model 
organisms

!  Differential expression 

!  Novel gene discovery 
!  Coding and non-coding genes 

!  anti-sense transcripts 

!  RNA editing 

!  Novel splicing variants & fusion 
genes 

!  Allele-specific expression 
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Figure 5 | Integration of ENCODE data by genome-wide segmentation.
a, Illustrative region with the two segmentation methods (ChromHMM and
Segway) in a dense view and the combined segmentation expanded to show
each state in GM12878 cells, beneath a compressed view of the GENCODE
gene annotations. Note that at this level of zoom and genome browser
resolution, some segments appear to overlap although they do not.
Segmentation classes are named and coloured according to the scheme in
Table 3. Beneath the segmentations are shown each of the normalized signals
that were used as the input data for the segmentations. Open chromatin signals
fromDNase-seq from theUniversity ofWashington group (UWDNase) or the
ENCODE open chromatin group (Openchrom DNase) and FAIRE assays are
shown in blue; signal from histone modification ChIP-seq in red; and
transcription factor ChIP-seq signal for Pol II and CTCF in green. The mauve

ChIP-seq control signal (input control) at the bottom was also included as an
input to the segmentation. b, Association of selected transcription factor (left)
and RNA (right) elements in the combined segmentation states (x axis)
expressed as an observed/expected ratio (obs./exp.) for each combination of
transcription factor or RNA element and segmentation class using the heat-
map scale shown in the key besides each heat map. c, Variability of states
between cell lines, showing the distribution of occurrences of the state in the six
cell lines at specific genome locations: fromunique to one cell line to ubiquitous
in all six cell lines for five states (CTCF, E, T, TSS and R). d, Distribution of
methylation level at individual sites from RRBS analysis in GM12878 cells
across the different states, showing the expected hypomethylation at TSSs and
hypermethylation of genes bodies (T state) and repressed (R) regions.
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The result of ENCODE gene annotation (termed ‘‘GENCODE’’)
is a comprehensive catalog of transcripts and genemodels. ENCODE
gene and transcript annotations are updated bimonthly and are
available through the UCSC ENCODE browser, distributed
annotation servers (DAS; see http://genome.ucsc.edu/cgi-bin/das/
hg18/features?segment=21:33031597,

33041570;type=wgEncodeGencodeManualV3), and the Ensembl
Browser [22].

RNA transcripts. ENCODE aims to produce a compre-
hensive genome-wide catalog of transcribed loci that characterizes
the size, polyadenylation status, and subcellular compartmen-
talization of all transcripts (Table 1).

Figure 1. The Organization of the ENCODE Consortium. (A) Schematic representation of the major methods that are being used to detect
functional elements (gray boxes), represented on an idealized model of mammalian chromatin and a mammalian gene. (B) The overall data flow from
the production groups after reproducibility assessment to the Data Coordinating Center (UCSC) for public access and to other public databases. Data
analysis is performed by production groups for quality control and research, as well as at a cross-Consortium level for data integration.
doi:10.1371/journal.pbio.1001046.g001

A User’s Guide to ENCODE

PLoS Biology | www.plosbiology.org 3 April 2011 | Volume 9 | Issue 4 | e1001046



Is RNA-seq useful for non-model 
species without reference genome?

!  RNA-seq is very useful for organisms lacking sequenced 
genome. 

!  With recent technological advances, de novo strategy of 
RNA-seq works well. 

!  RNA-seq is much easier and cheaper than whole genome 
sequencing.

Yes!
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Experimental design

!  Issues to be considered in designing RNA-seq experiments. 
!  You should define the goal. 
!  Which platform do you choose? 
!  Depth: How many reads do you need per sample? 
!  Length: How long do you sequence? 
!  Paired-end or single-end? 
!  Method for library construction  

!  Strand-specific? 
!  Normalize? 

!  How many biological replicates? 
!  Pool RNA from multiple individuals or use a single individual? 
!  Batch effect and lane effect. 
!  Informatics strategy. 
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Two major goals of RNA-seq

!  Build gene catalogue 

!  Expression level quantification
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Choosing a platform

Illumina? 454? IonTorrent? PacBio? Or combined strategy? 

 

!  Use of Illumina alone is my recommendation as of 
today.
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Library Prep: RNA extraction

!  RNA quality is the key to successful RNA-seq experiment 

!  RNA purification method: depends on the species and 
tissues. 

!  Poly A selection or rRNA depletion. 
!  You may need pilot experiment for rRNA depletion kit, such as 

RiboMinus, because it was originally developed for model 
organisms. 



Library construction method

!  Illumina TruSeq RNA-seq prep kit 
!  Normal kit 

!  Strand-specific kit 

!  Third party kits for special uses 
!  For small amount of RNA 

!  Detect transcription start site 
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RNA-seq informatics workflow in model 
organisms

mapping

summarization by unit  
(gene, transcript, exon)

normalization 

systems biology 
-  GO enrichment 
-  multivariate analysis 
-  network analysis 

pre-processing

Millions of short reads

Reads aligned to reference

Table of counts

List of DE gene

Biological insights

DE testing 



RNA-seq informatics workflow in model 
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1.  Build reference 
2.  Characterize reference



RNA-seq analysis pipeline (de novo strategy)
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-  Gene ontology term 
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Pre-processing of short reads

!  Filter or trim by base quality 

!  Remove artifacts 
!  adaptors 

!  low complexity reads 

!  PCR duplications (optional) 

!  Remove rRNA and other 
contaminations (optional) 

!  Sequence error correction 
(optional) 
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Suggestion:  Pre-processing is strongly 
recommended for de novo assembly.



RNA-seq analysis pipeline (de novo strategy)
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de novo assemblers of RNA-seq

!  Trinity 

!  Oases 

!  TransAbyss 

!  EBARDenovo 

!  … !"#$%&'(
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-./&*)(
01/23,(
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3)*78,(

9)*/,0).7:,(
;(

<,1=1)>,(

(Grabherr et al., 2011)

http://trinityrnaseq.sourceforge.net/

De novo assemblers use reads to assemble transcripts directly, which does 
not depend on a reference gnome.



Transcript reconstruction by expression 
quaintile using Trinity

!  1 !"##$#%&'()*+%,-&.(/",0-&*
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(Grabherr et al. 2011)



Cockroach RNA-seq

!  Motivation: 
!  Hygienic pest 

!  Developmental biology 
!  appendage regeneration 

!  Social biology 
!  comparison with termites 

!  Neuroscience 

!  Symbiosis with bacteria

Periplaneta americana 
ワモンゴキブリ

(Collaboration with Miura Lab of 北大)

Photo:wikipedia

our example



Little genetic / genomic information is available for cockroaches 
One of the reason is the large genome size 



Cockroach RNA-seq

!  6 libraries [Illumina TruSeq] 

!  Multiplexed Sequencing [HiSeq2000] 
!  Paired-end 101+101bp (HiSeq ver.2 half lane) 

Periplaneta americana

(Shigenobu, Hayashi and Miura, in prep)

Embryos Young 
larvae

Late 
larva ♀

Late 
larva ♂

Adult ♀ Adult ♂

9.6M 9.4M 9.1M 10.0M 8.1M 9.8M

 55.8M read pairs (11.2G bp)

De novo assembly with Trinity

146,172 contigs (! isoforms) 
90,837 components (! genes) 



Assembly Evaluation

!  Assembly statistics 
!  (example: our cockroach RNA-seq) 

!  # components: 90,473 

!  Mean: 772.2 base 

!  N50: 1384 base 

!  Total bases: 69.9 Mb 

!  Quality control 
!  No commonly accepted methods for de novo RNA-seq assembly. 

!  Proposed metrics: 
!  accuracy, completeness, contiguity, chimerism and variant resolution 

(Martin and Wang, 2011) 

!  Find artifacts and contaminations 



Bonus from RNA-seq “Contamination”

!  Full-length rRNA 
!  Low level rRNA contamination reads (~0.5%) are enough to 

recapitulate complete rRNA 

!  7,242bp rRNA obtained (Complete18S+28S) [New!] 

BLAST nr tophit taxonomy

!  Symbiont RNAs 
!  AT-rich bacterial transcripts remain. 

!  Some are just contamination, while some may 
be important partners, e.g. symbionts. 

!  80 Genes of Blattabacterium (obligatory 
endosymbiont of cockroach) found.

0.65% : Bacteria

our example



RNA-seq analysis pipeline (de novo strategy)

mapping

summarization
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-  GO enrichment 
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de novo assembly
pre-processing

Assembled contigs
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Gene model annotation

ORF prediction 
Functional annotation 
-  BLAST searches 
-  Motif search 
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ORF prediction

!  Special consideration in ORF prediction after de novo 
RNA-seq assembly 
!  Sometimes partial: Start Met or terminal codon may be 

missing. 

!  Ideally one ORF is present per contig, but erroneously joined 
contigs may include multiple ORFs.  

!  Possible frame shifts.  
!  Don’t worry. Frame shifts do not occur so often in Illumina. 



Functional Annotation of Predicted ORFs

!  BLAST 
!  NCBI NR (or UniProt) 
!  species of interest (model organisms, close relatives etc) 
!  specific DB (SwissProt, rRNA DB, CEGMA etc) 
!  self (assembly v.s. assembly)   

!  Motif search 
!  Pfam, SignalP etc. 

!  Ortholog analysis  
!  vs model organism 
!  ortholog database (OrthoDB, eggNOG, OrthoMCL etc) 
!  close relatives 

!  Gene Ontology term assignment 



Cockroach RNA-seq

!  ORF prediction 
!  28,649 (> 50aa)  

!  Gene repertoire in comparison with other insects 
!  16,826 show similarity w/ 7539 D. melanogaster genes [54.7% of 

Dmel gene set]  

!  18,233 show similarity w/ 7149 Pediculus humanus genes [66.3% 
of Phum gene set]  

!  25,524 (89.0%) represent 9,419 arthropod ortholog groups. 
(based on OrthoDB) 

our example



RNA-seq analysis pipeline (de novo strategy)
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RNA-seq analysis pipeline for DE

mapping

count by unit  
(gene, transcript, exon)

normalization 

systems biology 
-  GO enrichment 
-  multivariate analysis 
-  network analysis 

pre-processing

Millions of short reads

Reads aligned to reference

Table of counts

List of DE gene

Biological insights

DE testing 

sequences  fastq 

 

alignment  SAM/BAM 

 

table  text (tab delimited)

data type  format                       



Differential expression analysis

mapping

Count estimation

reads transcript reference 

alignments

count table

Differential expression test

DE gene list



Differential expression analysis

mapping with Bowtie2

Count estimation with RSEM or eXpress

reads transcript reference 

alignments

count table

Differential expression test by edgeR

DE gene list



Mapping – alignment software

!  Reference = Transcripts: 
short read mapper (unspliced read aligner) is used 

!  Bowtie2 – basic mapping to reference sequence 
 

others – BWA, SOAP2, PerM, SHRiMP, BFAST, ELAND 

 

Many aligners have been developed for short read mapping

http://bowtie-bio.sourceforge.net/bowtie2/index.shtml



Count Reads by Transcript

!  The simplest way: just count reads by contig.  

But… 

!  Multimapping issue should be considered. 

transcript-A transcript-B transcript-C

reads



Estimate Abundance 

!  Multimapping issues 
!  Isoforms  

!  Repetitive sequences 

!  Mapping ambiguity should be taken into consideration. 



Estimate Abundance 

!  Multimapping issues 
!  Isoforms ! important in working with Trinity output 

!  Repetitive sequences 

!  Mapping ambiguity should be taken into consideration. 
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uncertainty and error, and depends largely on splicing structure. 
Cuffdiff 2 determines the degree of overdispersion in this mixture 
by globally fitting the observed variance in fragment counts as a 
function of the mean across replicates (Supplementary Fig. 2). The 
algorithm then estimates the number of fragments that originated 
from each transcript, as previously described3,30. Next, it combines 
the uncertainty in each transcript’s fragment count with the over-
dispersion predicted to exist for that count by the global model of 
cross-replicate variability. Cuffdiff 2 estimates uncertainty by calcu-
lating the confidence that each fragment is correctly assigned to the 
transcript that generated it; transcripts with more shared exons and 
few uniquely assigned fragments will have greater uncertainty. The 
algorithm captures uncertainty in a transcript’s fragment count as a 
beta distribution and the overdispersion in this count with a negative 
binomial, and mixes the distributions together. The resulting mixture 
is a beta negative binomial distribution that reflects both sources of 
variability in an isoform’s measured expression level.

Cuffdiff 2 estimates expression at gene- and transcript-level resolu-
tion, the variance in the expression levels and the covariances between 
isoforms of the same gene from replicate experiments. This allows it to 

accurately estimate gene expression and perform differential analysis 
at gene-level resolution without encountering the limitations inherent 
in the raw count methods discussed above. The software reports to 
the user the change in expression for each gene and transcript, along 
with statistical significance scores for these changes.

Response to loss of HOXA1 at gene- and transcript-level resolution
To demonstrate the effectiveness of transcript-resolution RNA-seq 
analysis, we selected a biological problem arising from an ongoing 
study of the role of HOX gene function in adult cells. Genes in the 
HOXA cluster, which are critical for proper body patterning dur-
ing development, have spatial expression patterns in adult cells that 
identify their anatomic origin31. Whether this expression pattern is 
functionally relevant in adult cell types has been so far unanswered.

We performed RNA interference (RNAi)-mediated knockdown 
of HOXA1 in human primary lung fibroblasts, where HOXA1 was 
depleted using a pool of four short interfering RNAs (siRNAs) target-
ing HOXA1 designed to minimize off-target effects. We controlled for 
a nonspecific RNAi response by comparing HOXA1-depleted fibro-
blasts against cells treated with a pool of scrambled siRNAs that do not 
target a specific gene. We isolated total RNA in biological triplicate 
48 h after transfection. Sequencing of the poly-A–selected fraction 
on an Illumina HiSeq 2000 yielded >231 million 100-bp paired-end 
RNA-seq reads. The same RNA was labeled and hybridized to Agilent 
SurePrint G3 Gene Expression arrays (Online Methods).

Cuffdiff 2–derived changes in gene expression in response to 
HOXA1 knockdown strongly agreed with values from microarrays 
(Spearman correlation = 0.85), consistent with previous compari-
sons2,5 (Fig. 3a and Supplementary Fig. 3). Changes in multi-isoform 
gene expression calculated by Cuffdiff 2 improved concordance 
with the array measurements by 15% compared with the change 
in raw count (Fig. 3b and Supplementary Figs. 4 and 5). The dis-
crepancy between raw count and Cuffdiff 2 measurements of gene  
expression tended to be higher for genes where alternative isoforms 
shift in expression relative to one another, a phenomenon we term 
‘isoform switching’. (Supplementary Figs. 6 and 7).

Cuffdiff 2 returned far more statistically significant differentially 
expressed genes than microarray analysis. Cuffdiff 2’s differentially 
expressed genes contained 623 of the 745 (84%) reported by the arrays, 
along with an additional 4,138 genes (false-discovery rate (FDR) <1%). 
Moreover, Cuffdiff 2 was highly concordant with the popular count-based 
tools, with >94% of genes reported as differentially expressed also identi-
fied by the popular raw-count methods DESeq or edgeR (Fig. 3c).

Cuffdiff 2 detected expression for 16,278 of 69,202 (38%) tran-
scripts in the annotated transcriptome (UCSC hg19 coding genes; 
http://genome.ucsc.edu/), and identified an average of 1.15 differ-
entially expressed transcripts per differentially expressed gene in 
response to loss of HOXA1. Alternative isoform abundances rela-
tive to one another were maintained in most genes, with only 170 
genes undergoing significant (FDR  1%) differential splicing, coding 
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Figure 2 An overview of the Cuffdiff 2 approach to isoform-level 
differential analysis of RNA-seq data. (1) The variability in fragment count 
for each gene across replicates is modeled. (2) The fragment count for 
each isoform is estimated in each replicate, along with (3) a measure 
of uncertainty in this estimate arising from ambiguously mapped reads, 
which are extremely prevalent in alternatively spliced transcriptomes. 
(4) The algorithm combines estimates of uncertainty and cross-replicate 
variability under a beta negative binomial model of fragment count 
variability to estimate count variances for each transcript in each library. 
(5) These variance estimates are used during statistical testing to report 
significantly differentially expressed genes and transcripts.

!  Software: RSEM and eXpress (EM algorithm) 
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Software for RNA-seq DE analysis

!  Many software available 
!  edgeR 
!  Genominator 

!  DESeq 

!  DEGSeq 

!  baySeq 

!  NBPSeq 

!  TCC 

!  …



edgeR

!  A Bioconductor package for differential expression 
analysis of digital gene expression data 

!  Model: An over dispersed Poisson model, negative 
binomial (NB) model is used 

!  Normalization: TMM method (trimmed mean of M 
values) to deal with composition effects 

!  DE test: exact test and generalized linear models (GLM)



Differential expression analysis

mapping with Bowtie2

Count estimation with RSEM or eXpress

reads transcript reference 

alignments

count table

Differential expression test by edgeR

DE gene list



RNA-seq analysis pipeline (de novo strategy)

mapping

summarization

normalization 

systems biology 
-  GO enrichment 
-  multivariate analysis 
-  network analysis 

pre-processing

Millions of short reads

Reads aligned to reference

Table of counts

List of DE gene

Biological insights

DE testing 

Millions of short reads

de novo assembly
pre-processing

Assembled contigs

as a reference

Gene model annotation

ORF prediction 
Functional annotation 
-  BLAST searches 
-  Motif search 
-  Ortholog analysis 
-  Gene ontology term 



Beyond transcriptome: Other applications of 
de novo RNAseq assembly
 

!  Proteomics: 
Build proteome database for peptide mass fingerprinting 

!  Genomics: 
SNP identification 

!  “Homolog” cloning: 
Alternative to “degenerate PCR” for gene hunting 



Library prep

Sequencing

Data analysis

Biological implication

Biological insights 

Design experiment

Workflow: NGS study



Experimental design

!  Issues to be considered in designing RNA-seq experiments. 
!  You should define the goal. 
!  Which platform do you choose? 
!  Depth: How many reads do you need per sample? 
!  Length: How long do you sequence? 
!  Paired-end or single-end? 
!  Method for library construction  

!  Strand-specific? 
!  Normalize? 

!  How many biological replicates? 
!  Pool RNA from multiple individuals or use a single individual? 
!  Batch effect and lane effect. 
!  Informatics strategy. 



Experimental design for gene cataloguing

!  Depth: How many reads do you 
need per sample? 

!  Length: How long do you 
sequence? 

!  Paired-end or single-end? 
!  Method for library 

construction  
!  Strand-specific? 
!  Normalize? 

!  How many biological replicates? 
!  Pool RNA from multiple? 
!  Informatics strategy. 

- Longer is better. 
- Paired-end is strongly 

recommended.  
(ex) PE:100+100

- Strand-specific library is 
preferred, but normal one 
works well enough.  

- Normalized library is not 
recommended.

-  Difficult question… 

-  No replicates required. 
Instead 

-  Collect RNA from a wide 
variety of samples: tissue, cell 
type, developing stage (age), 
sex, treatments, environment 
etc. 

-  Single individual is preferred 



Experimental design for DE analysis

-  If you have reference, single-
end shorter reads are good 
enough. (ex. SE: 50 ~ 75)

-  Normal TruSeq is good 
enough for most purposes. 

-  Consider strand-specific 
library if you want to 
know anti-sense RNA etc. 

-  Difficult question… 

-  Biological replicates are 
strongly recommended. 

!  Depth: How many reads do you 
need per sample? 

!  Length: How long do you 
sequence? 

!  Paired-end or single-end? 
!  Method for library 

construction  
!  Strand-specific? 
!  Normalize? 

!  How many biological replicates? 
!  Pool RNA from multiple? 
!  Informatics strategy. 



NGS

Imaging

Genome 
Editing

Every organism that excites you is 
your MODEL

Take-home message

RNA-seq is the powerful tool for studies of non-model 
organisms. It can produce a nearly complete picture of 
transcriptomic events in a biological sample.
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