de novoシリーズ:第1回

非モデル生物のRNA-seq解析 ~実験デザインから解析パイプラインまで~

Shuji Shigenobu 重信 秀治

基礎生物学研究所 生物機能解析センター

April 3, 2013 Illumina Webinar Series

RNA-seq

RNA-seq is a revolutionary tool for *transcriptomics* using deep-sequencing technologies.

(Wang 2009 with modifications)

RNA-seq is unraveling complexities of eukaryotic transcriptomes in **model** organisms

- Differential expression
- Novel gene discovery
 - Coding and non-coding genes
- anti-sense transcripts
- RNA editing
- Novel splicing variants & fusion genes
- Allele-specific expression

a °r	GENCODE vi	Chr22: 7 genes	L .	46100000		45200000		45300000		45400	1001		4650000	o I	40	1 000000		46700000	
gmentation	Chroi S GWr:5878 combined							1000 000							-			Г	
ς, r	UW Open chrom	DNase											÷	- L.	î				
(cks	Ha Ra Ha	Kimet Kime2 Kime3						•		یەر د. د ام	مد سران ارت ا	i di sulla Sel sulla Sel sulla		• •••••	1	•••••			-
Signal tra	i Here Here	42450ac 3427ac 027me3		.k		1						مىلىمە 1 - مىلە 1 - مىلە	Å		1			salla L	-
	Har	Clamed Clamed CTCF	talangana)	للافينية. اردينانية	ine a life Ine a cont	stellter der	الله در همانا محالي (1991ء	ka . Kalis disensi I	h bi she		inter La la		. bitaa	bite bite	ades. Jans 1.	الم بندر میلا بر را بر مراد بر	بار همار به مدر رط ادر ایدر ا	المار حظامين الأسطانيات	
	Input	control											<u>.</u>				· · ·		Ľ

Is RNA-seq useful for **non-model species** without reference genome?

Yes!

- RNA-seq is very useful for organisms lacking sequenced genome.
- With recent technological advances, de novo strategy of RNA-seq works well.
- RNA-seq is much easier and cheaper than whole genome sequencing.

Workflow: NGS study

Workflow: NGS study

Experimental design

Issues to be considered in designing RNA-seq experiments.

- You should define the **goal**.
- Which **platform** do you choose?
- **Depth**: How many reads do you need per sample?
- Length: How long do you sequence?
- Paired-end or single-end?
- Method for library construction
 - Strand-specific?
 - Normalize?
- How many biological **replicates**?
- Pool RNA from multiple individuals or use a single individual?
- Batch effect and lane effect.
- Informatics strategy.

Experimental design

Issues to be considered in designing RNA-seq experiments.

- > You should define the goal.
- Which **platform** do you choose?
- **Depth**: How many reads do you need per sample?
- Length: How long do you sequence?
- Paired-end or single-end?
- Method for library construction
 - Strand-specific?
 - Normalize?
- How many biological **replicates**?
- Pool RNA from multiple individuals or use a single individual?
- Batch effect and lane effect.
- Informatics strategy.

Two major goals of RNA-seq

Build gene catalogue

Expression level quantification

Experimental design

Issues to be considered in designing RNA-seq experiments.

- > You should define the **goal**.
- Which **platform** do you choose?
- Depth: How many reads do you need per sample?
- Length: How long do you sequence?
- Paired-end or single-end?
- Method for library construction
 - Strand-specific?
 - Normalize?
- How many biological **replicates**?
- Pool RNA from multiple individuals or use a single individual?
- Batch effect and lane effect.
- Informatics strategy.

Choosing a platform

Illumina? 454? IonTorrent? PacBio? Or combined strategy?

Use of Illumina alone is my recommendation as of today.

Experimental design

Issues to be considered in designing RNA-seq experiments.

- You should define the **goal**.
- Which **platform** do you choose?
- **Depth**: How many reads do you need per sample?
- Length: How long do you sequence?
- Paired-end or single-end?
- Method for library construction
 - Strand-specific?
 - Normalize?
- How many biological **replicates**?
- Pool RNA from multiple individuals or use a single individual?
- Batch effect and lane effect.
- Informatics strategy.

Workflow: NGS study

Library Prep: RNA extraction

- RNA quality is the key to successful RNA-seq experiment
- RNA purification method: depends on the species and tissues.
- Poly A selection or rRNA depletion.
 - You may need pilot experiment for rRNA depletion kit, such as RiboMinus, because it was originally developed for model organisms.

Library construction method

Illumina TruSeq RNA-seq prep kit

- Normal kit
- Strand-specific kit

Third party kits for special uses

- For small amount of RNA
- Detect transcription start site

Workflow: NGS study

RNA-seq informatics workflow in model organisms

RNA-seq informatics workflow in model organisms

- I. Build reference
- 2. Characterize reference

RNA-seq analysis pipeline (de novo strategy)

RNA-seq analysis pipeline (de novo strategy)

Pre-processing of short reads

- Filter or trim by base quality
- Remove artifacts
 - adaptors
 - Iow complexity reads
 - PCR duplications (optional)
- Remove rRNA and other contaminations (optional)
- Sequence error correction (optional)

Suggestion: Pre-processing is strongly recommended for de novo assembly.

Martin et al (2011) Nat Rev Genet

RNA-seq analysis pipeline (de novo strategy)

de novo assemblers of RNA-seq

De novo assemblers use reads to assemble transcripts directly, which does not depend on a reference gnome.

- Trinity
- Oases
- TransAbyss
- EBARDenovo

http://trinityrnaseq.sourceforge.net/

Transcript reconstruction by expression quaintile using Trinity

Cockroach RNA-seq

Motivation:

- Hygienic pest
- Developmental biology
 - appendage regeneration
- Social biology
 - comparison with termites
- Neuroscience
- Symbiosis with bacteria

Periplaneta americ	ana
ワモンゴキブリ	Photo:wikipedia

(Collaboration with Miura Lab of 北大)

S NCBI			
Entrez PubMed Nucleotide Protein Genome Structure PMC		Taxonomy	Books
Search for as complete name 🗘 🗹 lock Go Clear			
Display 3 levels using filter: none 🗘			
Periplaneta americana		Entrez reco	ords
		Database name	Direct links
Taxonomy ID: 6978 Genbank common name: American cockroach		Nucleotide	<u>312</u>
Inherited blast name: roaches		Nucleotide EST	<u>2,550</u>
Rank: species	Protein	<u>332</u>	
Genetic code: <u>Translation table 1 (Standard)</u> Mitochondrial genetic code: Translation table 5 (Invertebrate Mitochondrial)	Structure	1	
millenonaria generie coue. <u>Hansiation table 5 (Inventebrate Infoenonentar</u>)		Popset	<u>84</u>
Lineage(full)		Domains	<u>1</u>
<u>cellular organisms; Eukaryota; Opisthokonta; Metazoa; Eumetazoa; Bilateria; Coelomata; Protostomi</u> Ecdysozoa: Panarthropoda: Arthropoda: Mandibulata: Pancrustacea: Hexapoda: Insecta: Dicondylia:	<u>a;</u>	UniSTS	<u>20</u>
Pterygota; Neoptera; Orthopteroidea; Dictyoptera; Blattodea; Blattoidea; Blattidae; Blattinae; Peripla	neta	PubMed Central	<u>408</u>
		Gene	<u>13</u>
		Bio Sample	<u>4</u>
		Taxonomy	1

Little genetic / genomic information is available for cockroaches One of the reason is the large genome size

Cockroach RNA-seq

- 6 libraries [Illumina TruSeq]
- Multiplexed Sequencing [HiSeq2000]

Paired-end 101+101bp (HiSeq ver.2 half lane)

Embryos	Young Iarvae	Late Iarva 우	Late Iarva d ^a	Adult 우	Adult d
9.6M	9.4M	9.IM	10.0M	8.IM	9.8M

55.8M read pairs (11.2G bp)

De novo assembly with Trinity

146,172 contigs (≈ isoforms)90,837 components (≈ genes)

(Shigenobu, Hayashi and Miura, in prep)

Assembly Evaluation

Assembly statistics

- (example: our cockroach RNA-seq)
 - # components: 90,473
 - Mean: 772.2 base
 - N50: 1384 base
 - Total bases: 69.9 Mb

Quality control

- No commonly accepted methods for de novo RNA-seq assembly.
- Proposed metrics:
 - accuracy, completeness, contiguity, chimerism and variant resolution (Martin and Wang, 2011)

Find artifacts and contaminations

Bonus from RNA-seq "Contamination"

Full-length rRNA

- Low level rRNA contamination reads (~0.5%) are enough to recapitulate complete rRNA
- 7,242bp rRNA obtained (Complete 18S+28S) [New!]

Symbiont RNAs

- AT-rich bacterial transcripts remain.
- Some are just contamination, while some may be important partners, e.g. symbionts.
- 80 Genes of Blattabacterium (obligatory endosymbiont of cockroach) found.

BLAST nr tophit taxonomy

RNA-seq analysis pipeline (de novo strategy)

ORF prediction

- Special consideration in ORF prediction after de novo RNA-seq assembly
 - Sometimes partial: Start Met or terminal codon may be missing.
 - Ideally one ORF is present per contig, but erroneously joined contigs may include multiple ORFs.
 - Possible frame shifts.
 - > Don't worry. Frame shifts do not occur so often in Illumina.

Functional Annotation of Predicted ORFs

BLAST

- NCBI NR (or UniProt)
- species of interest (model organisms, close relatives etc)
- specific DB (SwissProt, rRNA DB, CEGMA etc)
- self (assembly v.s. assembly)
- Motif search
 - Pfam, SignalP etc.

Ortholog analysis

- vs model organism
- ortholog database (OrthoDB, eggNOG, OrthoMCL etc)
- close relatives

Gene Ontology term assignment

our example

Cockroach RNA-seq

ORF prediction

- > 28,649 (> 50aa)
- Gene repertoire in comparison with other insects
 - I 6,826 show similarity w/ 7539 D. melanogaster genes [54.7% of Dmel gene set]
 - 18,233 show similarity w/ 7149 Pediculus humanus genes [66.3% of Phum gene set]
 - 25,524 (89.0%) represent 9,419 arthropod ortholog groups. (based on OrthoDB)

RNA-seq analysis pipeline (de novo strategy)

Differential expression analysis

Differential expression analysis

Mapping – alignment software

Many aligners have been developed for short read mapping

Reference = Transcripts:

short read mapper (unspliced read aligner) is used

Bowtie2 – basic mapping to reference sequence

http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

others – BWA, SOAP2, PerM, SHRiMP, BFAST, ELAND

The simplest way: just count reads by contig.
 But...

Multimapping issue should be considered.

Estimate Abundance

Multimapping issues

- Isoforms
- Repetitive sequences
- Mapping ambiguity should be taken into consideration.

Estimate Abundance

Multimapping issues

- ▶ Isoforms ← important in working with Trinity output
- Repetitive sequences
- Mapping ambiguity should be taken into consideration.

Software: RSEM and eXpress (EM algorithm)

conditions

_	A	В	С	D	E	F	G
1	#gene	m1	m2	m3	h1	h2	h3
2	AT1G01010	35	77	40	46	64	60
3	AT1G01020	43	45	32	43	39	49
4	AT1G01030	16	24	26	27	35	20
5	AT1G01040	72	43	64	66	25	90
6	AT1G01050	49	78	90	67	45	60
7	AT1G01060	0	15	2	0	21	8
8	AT1G01070	16	34	6	9	20	1
9	AT1G01080	170	191	382	127	98	184
10	AT1G01090	291	346	563	171	116	453
11	AT1G01100	113	125	246	78	27	361
12	AT1G01110	0	1	1	0	0	0
13	AT1G01120	228	189	270	147	83	174
14	AT1G01130	9	11	1	0	2	9
15	AT1G01140	181	120	142	161	73	134
16	AT1G01150	0	2	0	0	0	0
17	AT1G01160	117	125	215	86	46	212
18	AT1G01170	74	57	82	36	22	29
19	AT1G01180	46	7	26	24	18	58
20	AT1G01190	0	3	2	1	2	2
21	AT1G01200	5	0	2	0	0	0
22	AT1G01210	178	203	98	205	83	143
23	AT1G01220	26	49	40	21	15	34
24	AT1G01225	4	10	6	6	0	3
25	AT1G01230	72	51	58	70	18	77
26	AT1G01240	81	89	45	62	24	33
27	AT1G01250	1	1	5	1	2	2
28	AT1G01260	15	52	37	33	27	54
29	AT1G01290	7	16	23	30	5	19
30	AT1G01300	75	115	232	89	109	224

genes

Software for RNA-seq DE analysis

Many software available

- edgeR
- Genominator
- DESeq
- DEGSeq
- baySeq
- NBPSeq
- TCC
- • •

edgeR

- A Bioconductor package for differential expression analysis of digital gene expression data
- Model: An over dispersed Poisson model, negative binomial (NB) model is used
- Normalization: TMM method (trimmed mean of M values) to deal with composition effects
- **DE test**: exact test and generalized linear models (GLM)

Differential expression analysis

RNA-seq analysis pipeline (de novo strategy)

Beyond transcriptome: Other applications of *de novo* RNAseq assembly

Proteomics:

Build proteome database for peptide mass fingerprinting

• Genomics:

SNP identification

"Homolog" cloning:

Alternative to "degenerate PCR" for gene hunting

Workflow: NGS study

Experimental design

Issues to be considered in designing RNA-seq experiments.

- You should define the **goal**.
- Which **platform** do you choose?
- Depth: How many reads do you need per sample?
- Length: How long do you sequence?
- Paired-end or single-end?
- Method for library construction
 - Strand-specific?
 - Normalize?
- How many biological **replicates**?
- Pool RNA from multiple individuals or use a single individual?
- Batch effect and lane effect.
- Informatics strategy.

Experimental design for gene cataloguing

- Depth: How many reads do you need per sample?
- Length: How long do you sequence?
- Paired-end or single-end?
- Method for library construction
 - Strand-specific?
 - Normalize?
- How many biological replicates?
- Pool RNA from multiple?
- Informatics strategy.

- Longer is better.
- Paired-end is strongly recommended.
 (ex) PE:100+100
- Strand-specific library is preferred, but normal one works well enough.
- Normalized library is not recommended.
- No replicates required. Instead
- Collect RNA from a wide variety of samples: tissue, cell type, developing stage (age), sex, treatments, environment etc.
- Single individual is preferred

Experimental design for **DE analysis**

- Depth: How many reads do you need per sample?
- Length: How long do you sequence?
- Paired-end or single-end?
- Method for library construction
 - Strand-specific?
 - Normalize?
- How many biological replicates?
- Pool RNA from multiple?
- Informatics strategy.

- Difficult question...
- If you have reference, singleend shorter reads are good enough. (ex. SE: 50 ~ 75)
- Normal TruSeq is good enough for most purposes.
- Consider strand-specific library if you want to know anti-sense RNA etc.
- Biological replicates are strongly recommended.

Take-home message

RNA-seq is the powerful tool for studies of non-model organisms. It can produce a nearly complete picture of transcriptomic events in a biological sample.

Every organism that excites you is your MODEL