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ellular heterogeneity

Biological role of gene expression variability

Non-genetic population evolution of drug-
resistant clones in cancer progression
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Cellular heterogeneity

Biological role of gene expression variability

iPSOEXRWIRY 7O 53> 0

| #ifZqPCR (BugaimY et.al. Cell. 2012)
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Highly reproducible and sensitive detection method of gene expression
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Single-Cell Genomics

Biological role of gene expression variability

Grants / Center

US NIH: US$90 million over five years
http://www.nature.com/nature/journal/v480/n7375/full/480 | 33a.html#/bx|

Single-cell genomics centre launched in Broad institute
http://blogs.nature.com/news/2012/05/single-cell-genomics-center-launched.html

Meeting (201 3)

The 7th International Workshop on Approaches to Single-Cell Analysis
http://singlecellanalysis.stanford.edu

Single-Cell Genomics
http://www.weizmann.ac.il/conferences/SCG/welcome

Single-Cell Sequencing Conference
http://www.healthtech.com/Conferences_Overview.aspx?id=123234

Group

RIKEN CLUT (Single-Cell Sequencer)

Fluidigm Corporation (BioMark + C| + Smart-Seq)
Karolinska Institutet (STRT-Seq, Smart-Seq)

Azim Surani, Gurdon Insititute
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Whole transcript amplification is essential for
comprehensive expression profiling from single-cell
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A novel single-cell RNA-seq method

Single-cell whole-transcript-amplification methods
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Quartz-Seg

A novel single-cell RNA-seq method
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Whole-transcript amplification

10 pg total RNA

1. Reverse Transcription

2. Primer digestion

3. Restricted-Poly-A tailing

4. 2nd strand synthesis
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A novel single-cell RNA-seq method
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MighthyAmp Ver.2 (TaKaRa Bio)
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Suppression PCR
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5. Enrichment by
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Reverse transcription

AAAAA
Annealing (35 °C)\

TTTT TR

V
AAAAA

TTTTTAM]

4 Extention (45 °C)
AAAAA

TTTTTAM

Second strand synthesis

MTTTTT
\ Annealing (40 °C)
AAAAA TTTT T
¥
MTTTTT
[MIAAAAA TTTT T
¥
[MTTTTT
[MAAAAA TTTTTIAM]
a b
0.3 0.6
c p=000018 | .= 0.000035
o ! H :
.a E ‘a 1 '
$ 025{ ® 05-
S : S
x ! x
(O] (0]
© 024 g 041 p=0.013
() ' (0] L,
o 015 2 03]
e : Xe] :
& | B
S 014 S 0.2-
€ 1 €
.0 %
£ 0.051 % £ 011 %
10) 0]
(@] (@]
(@) O
O T 0 T 1
3545 50 40 35 45

RNAFEIRIE S5 D EHVI/3 N

Sensitivity and bias in PCR

Amplified cDNA

d cDNA
T
‘ /:deal
|
]
\V/ With bias
I
i
d
300000 p=o0000007 | 3
< 2500001 | g’é 2.5
Z E p = 0.00003
s I I D -G ISttt
3 2000001 & 21
i S :
§ 1500001 S 151 |
5 L ;
o s
-2.100000- | »§ 11
© >
3 ¢ )
= 50000- ;é 0.5 é
g I
0 © 0 .

Ex

cDNAIXZEHFISEIC
DNANZEILSDEH 12\

Byproducts

Primer digestion

TTTWM AT »
ol -

. < —

J Suvival ﬁtg
GM]
AAAAATTTT TIIAMM] X o
‘ ¥ Suvival

AT

MTTTTT Y —

<<
AAAAATTTTTILAM PR

Byproduct (<200 bp)

[MITTTTTAAAAALIZIM]
EAAAAA TTTT TIAM

$ g«ﬁ(m
X

D
*

w
o
)
)

----------------

=10.0023 5
> P E I
5 34 | 5 301
o :
T | 5 -
§25{ | = 25- ,
O . (0] |
2 i = ‘
s 2 8204
> ! ©
c15{ S 15
c 1.0 : e J
5 é o
2 E =
8 11 510
o i 2 =
®o05{ g 54
S ' 5 p =0.031
= b o

0 , 0
B- B+ B- B+

BlEYZ FFTEITHEE



ES 1 ug total RNA (Non-WTA) #2

Quartz-Seg

A novel single-cell RNA-seq method
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Single-Cell RNA-seq

10 pg Total RNA (0.1 pg mRNA) 75 D RNA-seq
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Primer contaminations

Quartz-Seq vs. Smart-Seq
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Smart-Seq, 10 pg ES-cells total RNA EBSK-02
(PE, 30M.n=4) EBST-01
ES-01
ES-02
N 1 E£S-03
‘ ES-04
(PE. S0OM n»=12
| I Smart-Seq es-os
ES-08
Quartz-Seq, Single ES cell -
uariz-Seq, Single ce - - ES-08
(PE.S0M n=12) ES-09
ES-10
ES-11 Sample
‘é’ Quartz-Seq. 50 PrE cells g ES-12 10 pg total RNA
& (PE.60M. n=2) 2 ES50-01 _ 50 ES colis
@ g SO0~z - 50 PrE cells
-4 4 ESSP1-03 I
L Quartz-Seq. 50 ES cells E ESSP1-04
» (PE.60M.n=2) o ESSP1-05 Sngle-ES cell
PrE-01 Single-PrE cell
PrE-02
Quartz-Seq, 10 pg ES-cells total RNA PrE-03
(PE.60M. n=3) PrE-04
PrE-05
PrE-06
PrE-07
Quartz-Seq, 10 pg ES-cells total RNA
(PE, 30M.n=4) PrE-08
PrE-0%
PrE-10
PrE-11
Non-WTA_ ES cells Q -S
(PE. 145 M n:s) uartz eq PrE-12
PrES0-01
PrESO-02
0 10 20 30 0 1 2 3 B 5
Contamination rate of WTA adaptor sequences (%) nation rate of rRNA (%)

Figure S8 Percentage of sequence reads of the suppression PCR primer or rRNA.

The left panel shows the contamination rate of the sequence read from the WTA adaptor
sequences. The X-axis indicates the contamination percentage of all sequence reads. The right
panel shows the contamination rate of rRNA. The X-axis indicates the percentage of the rRNA
contamination in all sequence reads.
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cDNA Length

Quartz-Seq vs. Smart-Seq
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cDNA Length

Quartz-Seq vs. Smart-Seq
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Figure S17 Scatter plots of conventional RNA-Seq and Quartz-Seq using 50 ES cells at the

G1 phase of the cell cycle and Quartz-Seq using 10 pg of total ES RNA.

The upper panel shows the reproducibility of technical replicates of conventional RNA-Seq,
Quartz-Seq (50 cells) and Quartz-Seq (10 pg of total ES RNA). The lower panel shows the

sensitivity of Quartz-Seq with 50 single cells and 10 pg of total ES RNA. The left scatterplot is
same in Figure 2. The respective Pearson correlation (R) and regression equation are shown in
each plot. The gray lines indicate a two-fold change and y = x. The red line is a linear regression.

The red points indicate a transcript with an FPKM expression larger than 1.0 and exhibited less
than two-fold expression changes between technical duplicates.
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cellular heterogeneity in same culture condition (gene expression variability)

in situ hybridization (Carter, MG. 2008)
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Over-representation analysis with Reactome
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cellular heterogeneity between different cell-types
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cellular heterogeneity in same culture condition

http://bit.accc.riken.jp/protocols/
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