Illumina Webinar

骨髄異形成症候群の分子プロファイリング

腫瘍生物学講座 小川誠司

骨髄異形成症候群(MDS)

- 代表的な造血器腫瘍(血液のがん)のひとつ。骨髄の異形成を伴った血球減少と急性骨髄性白血病(AML)への移行が特徴。
- 日本国内だけで数万人が罹患、年間5千~1万人以上が新規に発症。
- 高齢者がほとんどを占め(<u>90%以上が60歳以上!)</u>
- 人口の高齢化に伴い近年増加傾向。
- 骨髄移植(60歳以下)以外に根治的治療法がない!!

MDSは遺伝子変異によって発症する

1. どんな遺伝子が変異するのか?

2. それらの遺伝子異常によってなぜMDSになるか?

MDSにおける遺伝子変異

A point mutation at codon 13 of the N-ras oncogene in myelodysplastic syndrome

Hisamaru Hirai*, Yukio Kobayashi*, Hiroyuki Mano*, Koichi Hagiwara*, Yoshiro Maru*, Mitsuhiro Omine†, Hideaki Mizoguchi‡, Junji Nishida* & Fumimaro Takaku*

* The Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Hongo, Tokyo 113, Japan
† The Third Department of Internal Medicine, Gumma University School of Medicine, Maebashi, Gumma 371, Japan
‡ The Division of Hematology, Department of Medicine, Tokyo Women's Medical College, Shinjuku-ku, Tokyo 162, Japan

Nature 327:430-432, 1987

Mutations of the p53 Gene in Myelodysplastic Syndrome (MDS) and MDS-Derived Leukemia

By Koichi Sugimoto, Naoto Hirano, Hideo Toyoshima, Shigeru Chiba, Hiroyuki Mano, Fumimaro Takaku, Yoshio Yazaki, and Hisamaru Hirai

Blood 81: 3022-3026, 1993

ゲノムワイドなコピー数解析による新規変異の同 定

Sanada M, et al., Nature, 2009

Nikoloski G, et al., Nat Genet, 2010

Landscape of gene mutations in MDS 2010

RUNX1/RUNX1T1 CBFb/MYH11 PML/RARa MLL fusions Etc...

AML

Genomic Profile of 222 cases with myelodysplasia

Cost per Genome

Massively parallel sequencing

	96/98
Arrest Contraction of the second seco	

		GLIGA
	GAIIx	HiSeq 2000
Cluster density	800K	750K~850K
Area	200	2188.8mm2
Read length	100~150 x2	100 x 2
Total reads	~72Gbp	>600Gbp ->∼ 1Tbp

全ゲノムシーケンスによるがんゲノム解析

MDSの全エクソン解析

WHO Classification	Ν
RA	5
RARS	5
RCMD	9
RCMD-RS	1
del(5q)	2
MDS-U	1
RAEB-1	7
RAEB-2	10
AML/MRC	7
CMML1	6
CMML2	3
Total	56

Whole exome capture and sequencing

Number of somatic mutations / sample

MDSにおけるドライバー変異

	Gene			Gene			
1	TET2	13	14	STAG2	3		eosome
2	SRSF2	9	15	IDH1/2	2	=32/50	5 (57.0%)
3	U2AF1	7	16	PHF6	2		
4	ZRSR2	7	17	BCOR	2		CDCC2
5	SF3B1	9	18	SETBP1	2		SKSFZ
6	EZH2	5	19	HTR1A	2		
7	ASXL1	4	20	LUC7L2	2	None	U2AF1
8	NRAS	4	21	PCDHAC1	2		
9	KRAS	4	22	TCF4	2		ZRSR2
10	CBL	4	23	CACNA1E	2	PRPF40B	
11	DNMT3A	3	24	TTN	2	S	F3B1
12	RUNX1	3	25	ETNK1	2		P 2
13	TP53	3	26	GNB1	2	JI JDT+5U2	

RNAスプライシング変異とMDS

SF3B1 mutations

RARS (64~83%) RCMD-RS (57~76%) RARS-T (68~73%)

PPV = 97.7%, NPV = 98.7% (Malcovati et al, *Blood*, 2011)

(Yoshida et al., Nature, 2011)

Gene mutations in MDS vs AML

Pathway mutations of splicing machinery

(Yoshida K, et al., Nature, 2011)

Reduced chimerism after transplants with *U2AF35^{mut}*

(Otsu M, Yamamoto R, Nakauchi H)

Landscape of mutations in exome seq in 56 MDS cases

- ✓ 170kD protein associated with SET protein, which are thought to inhibit PP2A tumor suppressor
- ✓ Translocated/overexpressed in leukemia
- ✓ Major downstream target of Evi-1 oncogene
- ✓ Mutated in 10-25% of MDS/MPN subtypes and sAML
- ✓ Hotspot mutations involving D868, G870, and I871 identical to germline mutations in Schinzel-Giedeon syndrome

SETBP1 mutations are associated with poor survival

Leukemogenic potential of SETBP1 mutants

Origin of gain-of-function

(Piazza R et al., Nat Genet, 2013)

SETBP1 escapes from proteosome degradation

LETTERS

Recurrent mutations in multiple components of the cohesin complex in myeloid neoplasms

Ayana Kon¹, Lee-Yung Shih², Masashi Minamino³, Masashi Sanada^{1,4}, Yuichi Shiraishi⁵, Yasunobu Nagata¹, Kenichi Yoshida¹, Yusuke Okuno¹, Masashige Bando³, Ryuichiro Nakato³, Shumpei Ishikawa^{6,7}, Aiko Sato-Otsubo¹, Genta Nagae⁸, Aiko Nishimoto⁶, Claudia Haferlach⁹, Daniel Nowak¹⁰, Yusuke Sato¹, Tamara Alpermann⁹, Masao Nagasaki¹¹, Teppei Shimamura⁵, Hiroko Tanaka¹², Kenichi Chiba⁵, Ryo Yamamoto¹³, Tomoyuki Yamaguchi^{13,14}, Makoto Otsu¹⁵, Naoshi Obara¹⁶, Mamiko Sakata-Yanagimoto¹⁶, Tsuyoshi Nakamaki¹⁷, Ken Ishiyama¹⁸, Florian Nolte¹⁰, Wolf-Karsten Hofmann¹⁰, Shuichi Miyawaki¹⁸, Shigeru Chiba¹⁶, Hiraku Mori¹⁷, Hiromitsu Nakauchi^{13,14}, H Phillip Koeffler^{19,20}, Hiroyuki Aburatani⁸, Torsten Haferlach⁹, Katsuhiko Shirahige³, Satoru Miyano^{5,12} & Seishi Ogawa^{1,4}

(Kon A., et al., Nature gent, 2013)

Cohesin mutations in myeloid neoplasms

- Cohesion of sister chromatids
- Long-range regulation of gene expression
- Post-replicative DNA repair
- Responsible gene for congenital disorders (Cornelia de Lange syndrome and Roberts syndrome)

(A Kon, et al. Nature genet, 2013)

Karyotypes of cohesin mutated cases

(A Kon, et al. Nature genet, 2013)

Cohesin for long-range regulation of gene expression

Phillips-Cremins et al, Cell, 2013

BCOR/BCORL1 mutations in myeloid malignancies

- Responsible for Oculofaciocardiodental (OFCD) syndrome
- Involved in polycomb regulation
- Mutated in 19/208 myeloid malignancies (9.1%)
- 18/19(95%) were mutated in advanced disease types (RAEB,CMML,AML/MRC)
- 12/19(63%) were inactivating mutations
- Associated with poor clinical outcomes(F. Damm et al., Blood, 2013)

Spectrum of somatic mutation in MDS in 2014				
MDS	Splicing factors			
AA/PNH RPS14	(SF3B1, SRSF2, U2AF1, ZRSR2, etc) MDS/MPN			
ETV6	ZH2/EED/SUZ12 SETBP1			
RUNX1	ASXLI C-CBL			
PHF6	DNNII JA PIPNII TETO OUKA NEI			
BCOR	IEIZ CUX1 INII RIT1			
Cohe	sin IDH1/2 N/KRAS			
c-Kit	TP53			
FLT3	+8,-7/7q-,-5/5q-, cMPL			
NPM	1 20q-, 3q26, LNK			
AML CE	BPα Etc JAK2 PN			

Characteristics of 944 patients with MDS

Parameter		Total Cohort	Training Cohort	Validation Cohort
Patient Numbers		944	730	214
Median age	(years)	72.8 (23.3 – 90.8)	73.0 (24.3–90.8)	72.6 (23.3–90.4)
Patients with Follow-up data		786	611	175
Median overall survival	(months)	54.5	54.2	61.6
Median follow-up	(months)	32.3	34.2	15.9
Treatment	Supportive care only	592 (75.3%)	463 (75.8%)	129 (73.7%)
MDS Subtypes	(WHO, 2008)			
	RA	41 (4.3%)	32 (4.4%)	9 (4.2%)
	RARS	81 (8.6%)	63 (8.6%)	18 (8.4%)
	RARS-T	28 (3.0%)	22 (3.0%)	6 (2.8%)
	RCMD	195 (20.7%)	150 (20.5%)	45 (21.0%)
	RCMD-RS	183 (19.4%)	141 (19.3%)	42 (19.6%)
	RAEB-1	191 (20.7%)	147 (20.1%)	44 (20.6%)
	RAEB-2	188 (19.9%)	144 (19.7%)	44 (20.6%)
	MDS with isolated 5q-deletion	37 (3.9%)	31 (4.2%)	6 (2.8%)

Summary of targeted deep sequencing and somatic mutations calling

104 known or putative mutational genes captured using SureSelect

HiSeq 2000 (100bp, paired-end)@mean depth of 1000x

Align to the human genome reference (hg19) using BWA

Discard low-quality reads and low-quality bases

- Reads with 5 or more mismatches
- Reads with < 25 mapping quality
- Bases with < 30 base quality

Remove SNPs

- dbSNP131
- 1000 genomes as of 2011/05/21
- ESP 6500
- Missense SNVs with 0.45 ~ 0.55 allele frequency or on copy number change without registered in COSMIC V60.

Remove Sequence errors

- Remove candidates in 53 normal samples
- Mapping errors by visual inspection with IGV

A total of 2,764 single nucleotide variants (SNVs) and short indels were identified.

Distribution of allele frequencies

A total of 2,764 single nucleotide variants (SNVs) and short indels were identified.

MDSにおけるドライバー変異/欠失の頻度

(Haferlach et al., Leukemia, 2014)

Concordance between two large studies

Top 12 Genes		Top12 Genes in
in our results		Papaemmanuil et al
TET2		<i>SF3B1</i>
<i>SF3B1</i>		TET2
ASXL1		SRSF2
SRSF2		ASXL1
DNMT3A		DNMT3A
RUNX1		RUNX1
<i>U2AF1</i>		<i>U2AF1</i>
ZRSR2		<i>TP53</i>
STAG2		EZH2
<i>TP53</i>		IDH2
EZH2		STAG2
CBL		ZRSR2
N = 944		N = 738
104 genes tested		111 genes tested

Torsten Haferlach et al, Leukemia, 2013

Elli Papaemmanuil et al, Blood, 2013

Median of 3 driver gene mutations per semple

Number of gene mutations correlate blast counts MDS subtypes

Landscape of gene mutations in MDS (N=944)

Correlation among different mutations

(Torsten, et al., Leukemia, 2014)

Concordance of coexisting mutations between two studies

	Haferlach et al, Leukemia 2013 (N= 944)	Papaemmanuil et al, Blood 2013 (N= 738)	
TET2	ZRSR2 (q<0.0001) , SRSF2 , CBL (q<0.001)	SRSF2, ZRSR2 (q<0.01)	
SF3B1	DNMT3A , JAK2 (q<0.01)	DNMT3A (q<0.01)	
CDCE7	STAG2, ASXL1, RUNX1, IDH2 (q<0.0001)	STAG2, IDH2, CUX1	
JKJFZ	TET2 (q<0.001), CBL (q<0.01)	ASXL1, TET2, RUNX1 (q<0.01)	
U2AF1	ASXL1 (q<0.0001), PHF6, ETV6 (q<0.01)	ASXL1 (q<0.05)	
ZRSR2	TET2 (q<0.0001), PHF6 (q<0.01)	TET2 (q<0.01)	
	ASXL1 , RUNX1 , SRSF2, NRAS, BCOR	SRSF2, RUNX1 (q<0.01)	
STAG2	(q<0.0001) IDH2 (q<0.001)	ASXL1 (q<0.05)	
	EZH2 (q<0.01)	IDH2,EZH2 (q<0.1)	
DNMT3A	SF3B1 (q<0.001)	SF3B1 (q<0.01), BCOR (q<0.05)	
	SRSF2, ASXL1 , EZH2, STAG2, BCOR	STAG2, ASXL1, SRSF2 (q<0.01)	
RUNAI	(q<0.0001)	EZH2 (q<0.05), NRAS (q<0.1)	
	SRSF2, U2AF1 , STAG2 , IDH2, EZH2,	SRSF2, RUNX1 (q<0.01)	
ASXL1	RUNX1, NRAS (q<0.0001)	JAK2, U2AF1, STAG2 (q<0.05)	
	CBL (q<0.01)	IDH2, NRAS , CUX1 (q<0.1)	
EZH2	RUNX1, ASXL1, TP53, LAMB4, LUC7L2,	RUNX1 (a<0.05)	
	NPM1, ETV6 (q<0.0001)	STAG2 (a<0.1)	
	NRAS (q<0.001), STAG2 (q<0.01)		

- ✓ Mechanism of cancer development✓ Relapse
- ✓ Resistance to anti-tumor therapy

MDSにおける亜集団構造

MDSにおける腫瘍内多様性

Intratumor heterogeneity was evident in 456 cases. (48.3%)

Variations among variant allele frequencies

Significant difference in allele freq between common mutations

変異アレル頻度の比較

Gene 1

MDSにおける変異のヒエラルキー

(Torsten, et al., under review)

~0.2-4.5 per haploid genome/devision (Gundry and Vijg, 2012; Lynch, 2010).

健常人造血前駆細胞における変異数

Origin of mutations and MDS clones

健常人におけるTET2 変異とクローン性造 血

Recurrent somatic *TET2* mutations in normal elderly individuals with clonal hematopoiesis

Lambert Busque^{1–3,16}, Jay P Patel^{4,16}, Maria E Figueroa⁵, Aparna Vasanthakumar⁶, Sylvie Provost⁷, Zineb Hamilou^{2,3}, Luigina Mollica^{1–3}, Juan Li⁸, Agnes Viale⁸, Adriana Heguy⁴, Maryam Hassimi⁹, Nicholas Socci⁹, Parva K Bhatt⁴, Mithat Gonen¹⁰, Christopher E Mason^{11,12}, Ari Melnick^{12,13}, Lucy A Godley⁶, Cameron W Brennan^{4,14}, Omar Abdel-Wahab^{4,15,17} & Ross L Levine^{4,12,15,17}

Aging is characterized by clonal expansion of myeloid-biased hematopoietic stem cells and by increased risk of myeloid malignancies. Exome sequencing of three elderly females with clonal hematopoiesis, demonstrated by X-inactivation analysis, identified somatic *TET2* mutations. Recurrence testing identified *TET2* mutations in 10 out of 182 individuals with X-inactivation skewing. *TET2* mutations were specific to individuals with clonal hematopoiesis without hematological malignancies and were associated with alterations in DNA methylation.

-Y is also observed in older individuals : clonal hematopoiesis

Hazard ratios of mutated/deleted genes in univariate analysis

Hazard ratios in multivariate analysis

Development of a novel prognostic risk classification

Summary

- 1. Massively parallel sequencing technologies enabled identification of a full spectrum of gene mutations in MDS.
- 2. Major mutational targets in MDS included splicing factor genes (*SF3B1, SRSF2, U2AF1 and ZRSR2*), epigenetic regulators, and other novel gene targets, *such as BCOR, SETBP1, PPRF8, and* multiple components of the cohesin complex.
- 3. Intratumoral heterogeneity is common in MDS, indicating multiple round of acquisition of new mutations and clonal selections shapes the development and progression of MDS, in which multiple gene mutations occurred in a hierarchical fashion.
- 4. Molecular profiling of these mutations in a large MDS cohort clarified their impacts on clinical outcomes and disease phenotypes, enabling to construct a powerful prognostic model that outperforms current models.

Acknowledgement

Cleveland Clinic Taussig Cancer Institute

Hideki Makishima Kwok Peng Ng Mikael A. Seaker Jaroslow P. Maciejewski

Chang Gung Memorial Hospital, Chang Gung University

Lee-Yung Shih

Tokyo Metropolitan Ohtsuka Hospital

Ken Ishiyama Shuichi Miyawaki

Tsukuba University

Mamiko Sakata-Yanagimoto Shigeru Chiba

Showa University

Hiraku Mori

University of Tokyo Cancer Genomics Project

Kenichi Yoshida Yasunobu Nagata Ayana Kon Masashi Sanada Yusuke Sato Aiko Matsubara Yusuke Okuno

Human Genome Center

Yuichi Shiraishi Satoru Miyano

Center for Stem Cell Biology and Regenerative Medicine

Ryo Yamamoto Makoto Otsu Hiromitsu Nakauchi

Department of Pathology

Aiko Nishimoto Shunpei Ishikawa

Cedars-Sinai Medical Center

HPhillip Koeffler

Uniformed Services University of the Health Sciences

Yang Du Nhu Nguyen

MLL Laboratory

Alexander Kolemann Vera Grossman Torsten Haferlach Claudia Haferlach

University Hospital Mannheim

Wolf-Karsten Hofmann Florian Nolte Daniel Nowak

Deapartment of Pediatrics Nagoya University

Hitoshi Sakaguchi Hideki Muramatsu Seiji Kojima