進化するRNA-Seq:臨床検体からシングルセル解析まで ~ウェット・ドライ解析の実験ノート

東京大学 新領域創成科学研究科

"ゲノム支援"

^{文部科学省科学研究費新学} ゲノム支援	術領域研究 『生命種	科学系 3 分野支援活動。	🎩 춛 🍕 🖑				
 ホーム 							
▶ ゲノム支援とは		「ゲノム支援」けゲノム	記堂の				
▶ 支援課題公務		197 ム文援」は97 ム	H+V				
▶ 研究和離	する	そ野拡大とピーク作りをめ	うざします 👘 👘				
► FAQ			2 n				
▶ 関連リンク		(n	- <u>`</u> . 💓 🗖				
▶ お問, 1合せ	1	~					
ゲノム研究のホームページ ようない	\geq	d'à					
<u> こし二アムサノム4領域</u> デノム4領域	📕 最新情報						
院卒中(< LⅢTaba) 日前2.2107,00 2100, ¹	2010.09.01	平成22年度第1回公募は締め切りました。16 課題の遺定結果は9月末に申請者に連絡する予	7件の申請がありましたが、支援 定です。				
7 / A BLSI ユニット	2010.08.09	情報解析支援活動の支援可能な内容を修正しま	ut.				
クシンム メンド 星先站の 生命科学が大集合	2010.08.06	説明同意文書(インフォームドコンセント)のモデル書式の中で同意文書部分が抜 (すておりましたが、追加しました。					
	2010.08.05	FAQを更新しました。					
1014017	2010.08.03	支援課題の公募要領、及び、FAQを掲載しました					
+1413113	2010.07.30	平成22年度第一回支援課題公募は、8月3日((火)締めきりの予定です。支援申請等はすべて	<mark>火)</mark> から申請受付開始。 <mark>8月31日</mark> このホームページ上で行う予定で				
SGMJ 日本ゲノム機生物学会		*					
		滕空 剛	天阪天子				
		太田 邦史	東京大学				
		武田 洋幸 (森下BS)	東京大学				
		深田 吉孝	東京大学				
		多羽田 哲也	東京大学				
		三谷 啓志	東京大学				
		平良 眞規	東京大学				
		國枝武和	東京大学				

稲田 利文 高浜 洋イ 嶋田 透 田中 知明 後藤 由季 坂山 英俊 三室 仁美 國府 力 田中 知明 福澤 秀哉

Providing NGS platform for researchers in various research field http://www.genome-sci.jp/

			胎児型腎臓幹細胞の成体腎での再活性化	
FAQを掲載しました	Ē.		次世代シークエンサーを用いた生殖系列のエピゲノム修飾とトランスクリプトーム解析	
公募は、 <mark>8月3日(</mark>	<mark>火)</mark> から申請受付開始、8月31日	5	種内雑種を利用した対立遺伝子間の優劣に関わるDNAメチル化機構の解析	
援申請等はすべて	このホームページ上で行う予定で	-	メリステム制御の基盤を支える植物幹細胞の不等分裂の分子機構の解明	
			トゲウオ科魚類における種分化の遺伝機構	
	天阪天子		メダカ逆遺伝学的手法を基盤とした個体・組織レベルでの損傷応答解析系の確立	
	東京大学	8	長鎖非翻訳RNAを介したクロマチン/染色体機能の制御	
(森下BS)	東京大学		組織が創るマクロでロバストなコンパートメントの成立・維持のロジック	
	東京大学		脳時計ニューロンにおける光シグナリングと概日リズム制御の分子解析	
也	東京大学		ショウジョウバエの記憶形成回路の構造および機能発現の分子基盤	
	東京大学		個体内における電離放射線誘発突然変異成立過程の解明	
	東京大学		転写制御ネットワークから見る原ロ形成と原腸胚オーガナイザーの進化のメカニズム	
	東京大学		極限環境耐性動物クマムシが獲得した耐性メカニズムの解明	
	名古屋大学理学研	F究科	新生ポリペプチド鎖依存の翻訳アレストにおけるRACK1の機能解明	
	徳島大学		胸腺における自己形成と自己認識	
	東京大学		カイコとその近縁種における寄主植物選択機構の進化	
	千葉大学		p53転写因子複合体によるクロマチン機能調節とiPSリプログラム制御機構の解明	
子	東京大学		胎生期大脳新皮質神経幹細胞による多様な細胞の産生機構の解析	
	神戸大学		陸上植物の2倍体多細胞体制の起源をシャジクモ藻類の遺伝子から探る	
	東京大学		ヘリコバクターピロリの胃粘膜感染機構と炎症惹起メカニズムの研究	
	大阪大学		初期発生におけるクロマチン制御のリアルタイム解析	Þ.
	千葉大学		転写因子p53による新たな代謝調節機能と代謝環境応答のエピジェネティクス制御	
	京都大学		デジタル遺伝子発現解析による微細藻類のCO2濃縮・水素発生関連遺伝子の同定と	

RNA Seqの分類

<u>タグ数をカウントするもの (36bp Single End Read)</u>

発現量を計測するもの (mRNA) RNA Seq

small RNA Seq

タンパク質との相互作用を計測するもの RIP Seq/CLIP Seq

<u> 配列を決定するもの (>100 bp Paired End Read)</u>

遺伝子アノテーションするもの de novo アセンブリ mRNA Seq 選択的スプライシングを解析するもの

BioAnalyzer is essential for sample preparation

BioAnalyzer (Agilent): Electrophoresis on microchip

Dissection

To measure effective template amount

Examples of NGS data (RNA Seq on Genome Studio Viewer)

334 253.4 92 252 6.4 15.60

207

Occasionally, "irregular samples" should be also handled

Total RNA from operation material

RIN N/A; but this is still RNA!

"irregular" template

トマトのトランスクリプトーム解析 (成熟葉、老化葉)

試料調整とシークエンス

lissue	# reads (36bp)	# Assembled contigs 500bp< / 1k < / 1.5k<	%Matched with cDNA 500bp< / 1k < / 1.5k<	%Matched with tBLASTX < 1e-50 500bp< / 1k < / 1.5k<
mature leaves	29,923,071	7,165/ 2,304/834	4,648/1,456/467	6,866/ 2,280/828
old leaves	28,711,676	6,118/1,890/653	4,001/1,199/361	5,869/1,871/649

完全長cDNAへの発現情報の付加

(rpkm: read per million tags per kb mRNA)

新規転写産物の発見

De novo assembly of microTom transcripts and their annotations

	Denovo Assemi	oler (Abyss	version1.2.6)		
2012.2.22 時只	総リード数	全contig敔	over100 contis敖	over300bp contig数	over500bp_contis数
#1 MicroTom 7d-old cotyledon	30,393,980	235,955	43,884	8,295	3,851
#2 MicroTom 7d-old stem	32,967,391	120,770	54,022	14,790	7,350
#3 MicroTom 7d-old root	36,854,884	126,452	53,763	14,707	7,270
#4 MicroTom mature anther	10,482,883	73,518	17,788	3,427	1,670
#5 MicroTom mature petal	9,316,408	101,142	24,723	3,926	1,736
#6 MicroTom pistil(DAF0)	9,966,897	112,797	27,175	3,755	1,478
#7 MicroTom pistil(DAF5)	39,420,857	126,839	54,338	15,731	7,982
#8 MicroTom mature sepal	8,325,240	110,695	25,160	3,479	1,352
#9 MicroTom flower bud (5-6mm)	11,125,738	110,059	21,061	2,797	1,029
#10 MictoTom flower bud (3-4mm)	9,966,897	117,007	24,916	3,226	1,263
#11 MicroTom flower bud (2-2,5mm)	8,311,921	100,815	21,772	2,792	1,060
#12 MicroTom flower bud (<1.5mm)	9,859,575	120,008	27,851	3,534	1,336
#13 MicroTom pistil (DBA1)	29,264,717	210,913	59,212	11,866	5,391
#14 MicroTom anther (DBA1)	11,440,175	118,676	28,463	4,400	1,826
#15 MicroTom anther (3-4mm bud)	11,592,597	121,701	29,451	4,433	1,831
#16 MicroTom pistil (3-4mm bud)	8,373,840	111,534	26,855	3,547	1,356
#17 MicroTom pistil (2-2.5mm bud)	8,656,200	110,413	26,249	3,609	1,388
#18 MicroTom fruit (5mm in size)	12,681,304	124,587	19,546	2,430	929

query (solexa_abyss_contig)	subject (ncbi_NT)	alignment_length	direction	q_start c	_end	s_start	s_end	e_val	(s_start) - (q_start) definition
7998 521 10649	gi 225316850 dbj AK322604.1	173	-1	519		1 196	714	3.00E-117	-323 Solanum lycopersicum cDNA, clone: LEFL1039DC11, H
8009 1081 14811	gi 255556473 ref XM_002519225.1	195	1	1	58	5 1429	2013	1.00E-114	1428 Ricinus communis conserved hypothetical protein, mRI
8034 1095 31856	gi 14485574 gb AF320028.1 AF320	161	-1	527	100	9 505	23	: O	-22
8043 795 20118	gi 225318876 dbj AK323834.1	264	-1	793		2 98	889	2.00E-168	-695 Solanum lycopersicum cDNA, clone: LEFL1065DH10, H
8047 1146 9688	gi 225442449 ref XM_002277903.1	108	-1	1145	82	2 1213	1536	5.00E-53	68 PREDICTED: Vitis vinifera hypothetical protein LOC10
8055 678 9145	gi 157863707 gb EU159402.1	157	1	2	47	2 1423	1893	3.00E-104	1421 Solanum lycopersicum inositol-1,4,5-triphosphate-5-ph
8070 732 6830	gi 332002898 gb CP002688.1	185	-1	557		3 14913585	14914139	6.00E-106	14913028
8114 723 5843	gi 224101258 ref XM_002312169.1	73	1	1	21	9 313	531	5.00E-49	312 Populus trichocarpa predicted protein, mRNA
8154 1407 17845	gi 225314868 dbj AK321217.1	319	1	451	140	7 607	1563	0	156 Solanum lycopersicum cDNA, clone: LEFL1021CF01, H
8155 1040 7900	gi 225448889 ref XM_002270836.1	211	1	21	65	3 88	720	1.00E-106	67 PREDICTED: Vitis vinifera hypothetical protein LOC10
8168 1482 34829	gi 47105223 gb BT013808.1	454	-1	121	148	2 2406	1045	i 0	2285 Lycopersicon esculentum clone 132729F, mRNA seque
8195 708 25150	gi 124052075 emb CU302232.4	170	-1	669	16	0 94362	94871	1.00E-147	93693 S.lycopersicum DNA sequence from clone LE_HBa-29F
8196 550 3861	gi 225311526 dbj AK326465.1	183	1	549		1 1516	965	2.00E-116	967 Solanum lycopersicum cDNA, clone: LEFL2007N22, HT
8203 544 17195	gi 225320093 dbj AK324463.1	180	1	542		3 658	119	3.00E-117	116 Solanum lycopersicum cDNA, clone: LEFL1078AE04, H
8213 870 6299	gi 225321185 dbj AK325396.1	156	1	403	87	0 673	1140	1.00E-169	270 Solanum lycopersicum cDNA, clone: LEFL1096AC09, H
8217 540 39640	gi 148538774 dbj AK247540.1	166	1	3	50	0 79	576	5.00E-101	76 Solanum lycopersicum cDNA, clone: LEFL1044BH06, H
8222 620 6172	gi 225320594 dbj AK324683.1	206	1	2	61	9 717	1334	1.00E-143	715 Solanum lycopersicum cDNA, clone: LEFL1080DG11, H
8232 594 33557	gi 225470135 ref XM_002265153.1	198	1	1	59	4 544	1137	8.00E-106	543 PREDICTED: Vitis vinifera hypothetical protein LOC10
8242 696 8318	gi 225312017 dbj AK319756.1	231	1	695		3 780	88	6.00E-155	85 Solanum lycopersicum cDNA, clone: LEFL1001DB02, H
8270 567 6539	gi 212658107 gb FJ404768.1	188	-1	2	56	5 21821	21258	3.00E-114	21819 Antirrhinum majus clone BAC 69d6 genomic sequence
8288 585 6692	gi 225314435 dbj AK327785.1	193	1	579		1 2044	1466	2.00E-114	1465 Solanum lycopersicum cDNA, clone: LEFL2037018, HT
8289 654 4299	gi 224137399 ref XM_002322512.1	71	1	369	58	1 1978	2190	3.00E-43	1609 Populus trichocarpa predicted protein, mRNA
8301 608 6840	gi 225313959 dbj AK327706.1	202	-1	607		2 1174	1779	7.00E-139	567 Solanum lycopersicum cDNA, clone: LEFL2035P18, HTC
8306 774 5292	gi 33411116 gb AF167428.1	258	1	1	77	4 9791	10564	1.00E-172	9790 Lycopersicon esculentum 1-aminocyclopropane-1-cart
8318 942 14259	gi 225318543 dbj AK329518.1	297	-1	941	5	1 240	1130	0	-701 Solanum lycopersicum cDNA, clone: LEFL3146A13, HT
8335 786 4810	gi 225434290 ref XM_002275824.1	262	-1	786		1 121	906	7.00E-139	-665 PREDICTED: Vitis vinifera hypothetical protein LOC10
8347 642 3352	gi 225313885 dbj AK327632.1	214	1	1	64	2 610	1251	8.00E-156	609 Solanum lycopersicum cDNA, clone: LEFL2034G21, HT
8356 1240 10415	gi 225314969 dbj AK321318.1	262	1	453	123	8 1178	1963	: O	725 Solanum lycopersicum cDNA, clone: LEFL1023AH03, H
8366 735 13343	gi 171854676 dbj AB372269.1	131	1	180	57	2 2534	2926	i 2.00E-83	2354 Capsicum chinense mRNA for putative 26S proteasom
8404 600 3264	gi 225321071 dbj AK325282.1	200	-1	1	60	0 1196	597	4.00E-133	1195 Solanum lycopersicum cDNA, clone: LEFL1094CE09, H
8431 1174 15503	gi 147867468 gb AC204082.1	118	-1	1174	82	1 21075	21428	0	19901 Solanum lycopersicum cv. Heinz 1706, chromosome 5 &
8447 1173 43488	gi 47105512 gb BT014097.1	201	1	603		1 638	36	i 0	35 Lycopersicon esculentum clone 133201 F, mRNA seque
8451 1025 12226	gi 225445624 ref XM_002264380.1	333	1	4	100	2 190	1188	0	186 PREDICTED: Vitis vinifera hypothetical protein LOC10
8455 1380 22676	gi 225434719 ref XM 002279940.1	78	1	1032	126	5 4735	4968	7.00E-60	3703 PREDICTED: Vitis vinifera hypothetical protein LOC10
8460 739 4398	gi 326787317 gb AC244068.7	79	-1	737	50	1 1645	1881	5.00E-145	908
8501 611 6527	gi 225319229 dbj AK323988.1	203	-1	610		2 66	674	9.00E-131	-544 Solanum lycopersicum cDNA, clone: LEFL1069BB11, H
8510 608 3654	gi 225315227 dbj AK321380.1	202	1	1	60	6 62	667	7.00E-136	61 Solanum lycopersicum cDNA, clone: LEFL1024AC05, H
8543 1805 26793	gi 225322306 dbj AK326322.1	601	-1	1805		3 714	2516	i 0	-1091 Solanum lycopersicum cDNA, clone: LEFL2004124, HTC
8547 1372 27152	gi 225321143 dbj AK325354.1	426	1	3	128	0 25	1302	. 0	22 Solanum lycopersicum cDNA, clone: LEFL1095CC03, H
8560 655 8991	gi 225316436 dbj AK322389.1	218	1	2	65	5 23	676	i 2.00E-143	21 Solanum lycopersicum cDNA, clone: LEFL1037BD07_H

ある魚類のdenovo

Solexa Read 76PE

(Pass Filtered , remove the read including N)

AbySS (version 1.2.6)

> 500bp contig 抽出

tBlastX (Query:contig, DB: NT)

ELAND (Ref:contig)

contig_length	件数
500-599	4323
600-699	3190
700-799	2561
800-899	1959
900-999	1599
1000-1999	6992
2000-2999	1633
3000-3999	487
4000-4999	163
5000-5999	75
6000-6999	30
7000-7999	18
8000-8999	6
9000-9999	6
1 0000-1 0999	1
11000-11999	
12000-	2
total	23045

11,549

15 近藤研との共同研究

assemble result

46,771,912

23,045

(Average 1,141bp)

JDPBLs-1

ある魚類のdenovo

• tblastx assembled contig to NT

■ニジマス (Oncorhynchus mykiss)
■イトヨ (Gasterosteus aculeatus)
■タイセイヨウサケ(Salmo salar)
■ミドリフグ(Tetraodon nigroviridis)
■オヒョウ:ヒラメ(Hippoglossus hippoglossus)
■マウス
■トラフグ (takigufu)
■ギンダラ (Anoplopoma fimbria)
■ヒラメ (Paralichthys olivaceus)
■その他 Examp
nt対応なし

ゼブラフィッシュ (Danio rerio)

2	5	86
ry 🦕	Expect = 1e-124	
i i	Identities = 100%	
B		

contig領域 タク集計						
tag	ppm	rpkm				
2035	94	159.86				

tblastx結果 内訳	
ゼブラフィッシュ(Danio rerio)	27%
ニジマス(Oncorhynchus mykiss)	6%
イト∃ (Gasterosteus aculeatus)	5%
タイセイヨウサケ(<i>Salmo salar</i>)	5%
ミドリフグ(Tetraodon nigroviridis)	4%
オヒョウ:ヒラメ(<i>Hippoglossus hippoglossus</i>)	4%
マウス	2%
トラフグ(takigufu)	1%
Lト	1%
ギンダラ(Anoplopoma fimbria)	1%
ヒラメ(Paralichthys olivaceus)	1%
その他	12%
nt対応なし	30%

ple: xxx Assembled contig : Query length 588bp

>contig_102559 588 97855

GTTCGATCTGGGTGGCGGCACCTTCGATGTCTCCCTCTTGACCATCGACAATGGTGTGTTTGAAGTGGTG GCCACCAACGGTGACACTCACCTGGGAGGTGAGGACTTCGACCAGCGCGTCATGGAGCACTTCATCAAG CTGTACAAGAAGAAAACTGGCAAAGATGTGCGCAAAGACAACCGTGCTGTGCAGAAGCTGCGTCGTGA GGTTGAGAAGGCAAAGAGGGGGGCTGTCCGCCCAGCACCAGGCCCGCATTGAGATCGAGTCCTTCTTTGA GGGAGAAGACTTCTCTGAGACTCTGACCCGTGCCAAGTTTGAAGAGCTGAACATGGACCTGTTCCGTTCC ACCATGAAGCCTGTGCAGAAGGTGCTGGAAGATTCCGACCTGAAGAAATCTGACATCGATGAGATTGTC CTGGTTGGAGGCTCCACCCGTATCCCCAAAATTCAGCAGCTGGTGAAGGAGTTCTTCAATGGCAAGGAGC CATCTAGGGGCATCAACCCTGATGAGGCTGTGGC

>] gb | DQ662232.1 | Paralichthys olivaceus glucose-regulated protein 78 (Grp78) mRNA, complete cds Length=2597

Score Ident Frame	= 45; ities = +2/-	2 bits (989), Expect = 1e-124 = 195/195 (100%), Positives = 195/195 (100%), 1	Sort alignments f E value <u>Score</u> <u>Query start pos</u> Gaps = 0/195 (0%	or this subject <u>Percent identit</u> <u>ition</u> <u>Subject s</u>)	sequence by: <u>y</u> start position
Query	2	NEPTAAAIAYGLDKRDGEKNILVFDLGGGTFDVSLLTIDNGVFE	VVATNGDTHLGGEDFD	181	
Sbjct	748	NEPTAAAIAYGLDKRDGEKNILVFDLGGGIFDVSLLTIDNGVFE	VVATNGDTHLGGEDFD	927	
Query	182	QRVMEHFIKLYKKKTGKDVRKDNRAVQKLRREVEKAKRGLSAQH	QARIEIESFFEGEDFS	361	
Sbjct	928	QRVMEHFIKLYKKKIGKDVRKDNRAVQKLRREVEKAKRGLSAQF QRVMEHFIKLYKKKTGKDVRKDNRAVQKLRREVEKAKRGLSAQF	IQARIEIESFFEGEDFS	1107	
Query	362	ETLTRAKFEELNMDLFRSTMKPVQKVLEDSDLKKSDIDEIVLVQ	GSTRIPKIQQLVKEFF	541	
Sbjct	1108	EILIRAKFEELNMULFRSIMKPYUKYLEDSULKKSUIDEIVLYU ETLTRAKFEELNMULFRSTMKPYUKYLEDSULKKSUIDEIVLYU	GSTRIPKIQQLVKEFF	1287	
Query	542	NGKEPSRGINPDEAV 586			16
Sbjct	1288	NGKEPSRGINPDEAV NGKEPSRGINPDEAV 1332			

情報解析

鈴木絢子·鈴木穰 実験医学増刊 印刷中

用途	ソフトウェア	URL	概要
マッピング	BWA	http://bio-bwa.sourceforge.net/	ショートリードをゲノムにマッピングする(Li H. and Durbin R. 2009 <i>Bioinformatics</i>)。
	Bowtie2	http://bowtie- bio.sourceforge.net/bowtie2/index.shtml	ショートリードを少ないメモリで参照配列に高速にアラ イメントする(Langmead and Steven L Salzberg. 2012 Nat Methods)。
	TopHat2	http://tophat.cbcb.umd.edu/	スプライスジャンクションを考慮したマッピングをおこなう(Kim et al. 2013 Genome Biol)。
遺伝子発現解析	Cufflinks	http://cufflinks.cbcb.umd.edu/	異なるスプライスバリアントごとの発現量の計算や新 規転写産物のアセンブルを行う(Trapnell et al. 2010 Nat Biotechnol)。
	Cuffdiff	同上	Cufflinksのコマンドの一つ。群間の発現量やスプライ スパターンの差異を検出する(Trapnell et al. 2013 Nat Biotechnol)
	DEseq	http://bioconductor.org/packages/release/bioc/html/DESeq.html	群間のRNA Seqタグ数や発現量の差を統計的に抽出 する(Anders and Huber. 2010 Genome Biol)。
融合遺伝子探索	TopHat-fusion	http://tophat.cbcb.umd.edu/fusion_index.html	TopHat2ベースで、シングルまたはペアエンドリードから融合遺伝子を抽出する(Kim and Salzberg. 2011 Genome Biol)。
	deFuse	http://compbio.bccrc.ca/software/defuse/	ペアエンドのRNA Seqリードから、融合部位を抽出する(McPherson et al. 2011 PLoS Comput Biol)。
	SOAPfuse	http://soap.genomics.org.cn/soapfuse.html	ペアエンドのRNA Seqリードから、融合部位を抽出す る(Jia et al. 2013 <i>Genome Biol</i>)。
アセンブル	Trans-Abyss	http://www.bcgsc.ca/platform/bioinfo/software/trans-abyss	n トランスクリプトームde novoアセンブラ(Robertson et al. 2010 Nat Methods)。
	Trinity	http://trinityrnaseq.sourceforge.net/	ショートリード向けのトランスクリプトームアセンブラ。必要なメモリ量は大きい(Grabherr et al. 2011 <i>Nat Biotechnol</i>)。
可視化ツール	UCSC Genome Browser	http://genome.ucsc.edu/cgi-bin/hgGateway	データをアップロードして表示することができる(Kent et al. 2002 <i>Genome Res</i>)。
	IGV	https://www.broadinstitute.org/igv/home	BAM、BEDファイルなどを簡単に可視化でき、操作性 が高い(Robinson et al. 2011 Nat Biotechnol)。

Yamagishi et al Genome Res (2014)

To avoid delicate material handling in fields To monitor human gene expressions simultaneously

Read Statistics (malaria patients)

	Human	P. falciparum
Number of samples	116 (24 from Manado, 92 from Bitung)	
Total number of mapped reads	3,016,323,916 (25M reads on average)	
Number of mapped reads	2,794,371,292	244,767,495
Average frequency of parasite reads	10.2%	

新技術:方法論の多様化

illumina

TruSeq[®] Stranded mRNA Sample Preparation Guide

アジレント SureSelect Strand-Specific RNA ライブラ

リ調製

イルミナマルチプレックスシーケ

ンス対応

Whole-Transcriptome ライブラリ調製

プロトコル

Agilent

N9

2.582

19,959,000 bp

10,058,000 bp

Illumina

Tani et al Genome Res (2012)

"BRIC" Analysis for determining mRNA half-life (Akimitsu lab)

BRIC can monitor the T1/2 for each RNA

BRIC revealed Half-lives of mRNAs in a genome-wide manner

RNAs related to "regulations" are enriched in short-lived RNAs

mRNAs of short half-lives are enriched in the population of ChIP+/RNA-

Maekawa et al submitted

half-lives of mRNAs are controlled independently from transcriptional initiation

ChIP+/RNA-

RefSeq: <u>NM 001206957.1</u>

Description: Homo sapiens Ras association (RalGDS/AF-6) domain family member 1 (RASSF1), transcript variant H, mRNA.

Position: chr3:50367217-50378367

Strand: - Gene Symbol: RASSF1

Matsumoto et al NAR in press

Mate Pair library can detect TSS/TTS simultaneously

Alternative TSS/TTS and their relations

Semi-Automated Single-cell RNA Seq analysis

成功率: 80% (Fluidigm)-> 60-70% (デモでの経験)

Suzuki et al submitted
Distinct splice patterns in different single-cells

U2AF1

GAPDH

相関係数 1回目 (C1_LC2AD: 131025_HISEQ1A) vs 2回目 (LC2AD_2ND: 131025_HISEQ1B)

Schematic diagram of RIP(RNA immunoprecipitation) -Seq

Identification of RNA binding protein target mRNAs

夏目研@お台場

Kanematsu et al Gene 2012

small RNA Seq (DLD-1; the MIMAT0004584 gene region)

Schematic diagram of biogenesis of microRNAs and post-transcriptional silencing of target mRNA

次世代シークエンスデータの統合的解析

mRNA動態の網羅的理解へ

B <u>The MIR17HG_gene region (DLD-1 cells)</u>

肺腺がん細胞株のカタログ化 (と多階層オミクス解析のモデル)

Suzuki et al PLoS ONE 2013

Mutataion patterns of lung adenocarcinoma in 97 Japanese patients

Materials

26 lung adenocarcinoma cell lines

name	origin
PC-3	Japanese
PC-7	Japanese
PC-9	Japanese
PC-14	Japanese
RERF-LC-Ad1	Japanese
RERF-LC-Ad2	Japanese
RERF-LC-KJ	Japanese
RERF-LC-MS	Japanese
RERF-LC-OK	Japanese
VMRC-LCD	Japanese
ABC-1	Japanese
LC2/ad	Japanese
II-18	Japanese
A427	Caucasian
A549	Caucasian
H322	Caucasian
H2228	Unknown
H1299	Caucasian
H1437	Caucasian
H1648	Black
H1650	Caucasian
H1703	Caucasian
H1819	Caucasian
H1975	Unknown
H2126	Caucasian
H2347	Caucasian

All cell lines were provided from Dr. Tsuchihara and Dr. Kohno in National Cancer Center.

Genome

Whole-genome sequencing:

- ✓ Single nucleotide variants (SNVs), Insertion/deletions (indels)
- ✓ Copy number aberrations (CNAs)
- ✓ Chromosome rearrangements

Summary of SNVs/indels

	Total number of positions		
	(Avg. of 26 cell lines)		
	SNVs	Short indels	
Tatal	12,732,271	1,916,622	
IULAI	(3,302,407)	(453,821)	
Cormline	10,010,429	1,597,810	
Germine	(3,177,173)	(429,846)	
Somatic candidatos	2,721,842	318,812	
Somatic candidates	(125,234)	(23,975)	
Conic [*]	892,941	118,268	
Genic	(39 <i>,</i> 695)	(8,516)	
(Instroom (EQO from TSS)	11,796	2,049	
Opstream (-500 from 155)	(551)	(159)	
LITPe	24,902	13	
0113	(1,086)	(0.8)	
CDS	16,354	573	
603	(687)	(37)	
Synonymous	4,505	* * *	
Synonymous	(188)		
Non-synonymous	11,849	* * *	
Non-synonymous	(499)		
Splice sites [†]	346	39	
Spice sites	(14)	(3)	
Intronic and others	839,543	115,594	
introllic and others	(37,357)	(8,315)	
Intergenic	1,828,901	200,544	
intergenie	(85 <i>,</i> 539)	(15,459)	

Genomic mutation status in 26 cancer-related genes

Ding et al. Nature 2008; Blanco et al. Hum Mutat 2009; Imielinski et al. Cell 2012

Genome

Sequencing data

Whole-genome sequencing

Sequencing: illumina HiSeq2000/2500; 101PE

mRNA-Seq

Sequencing: illumina HiSeq2000/2500; 101PE

Bisulfite sequencing

Capture: Agilent SureSelect Methyl-Seq Target Enrichment System (84 Mb) Sequencing: illumina HiSeq2000/2500; 101PE

ChIP-Seq for histone modifications and RNA Polymerase II

Sequencing: HiSeq2000/2500; 36SE

IP	Marker
H3K4me3	Active
H3K4/9ac	Active
Pol II	Active
H3K36me3	Active (elongation)
H3K9me3	Silent, Heterochromatin
H3K27me3	Silent
H3K4me1	Active, Enhancer
НЗК27ас	Active, Enhancer

Small-molecule inhibitors to chromatin-associated factors

Table 1: Small molecule inhibitors to chromatin-associated proteins

Chromatin-binding protein	Compound
Histone methyltransferases	
DOT1L	EPZ004777 (ref. 21), EPZ-5676 (ref. 24), SGC0946 (ref. 86)
EZH2	GSK126 (ref. 37), GSK343 (refs 87,88), EPZ005687 (ref. 38), EPZ-6438 (ref. 44), El1 (ref. 39), UNC1999 (ref. 89)
G9A	BIX01294 (ref. 90), UNC0321 (ref. 91), UNC0638 (ref. 92), NC0642 (ref. 88), BRD4770 (ref. 93)
PRMT3	14u (ref. 94)
PRMT4 (CARM1)	17b (Bristol-Myers Squibb) (refs 95,96), MethylGene (ref. 97)
Histone demethylases	
LSD1	Tranylcypromine (ref. 62), ORY-1001 (ref. 63)
Bromodomains	
BET	JQ1 (ref. 73), IBET762 (ref. 72), IBET151 (refs 76,98), PFI-1 (ref. 99)
BAZ2B	GSK2801 (ref. 88)
Chromodomains	
L3MBTL1	UNC669 (ref. 100)
L3MBTL3	UNC1215 (ref. 101)

Helin & Dhanak. 2013 *Nature* Chromatin proteins and modifications as drug targets

JQ1: a small-molecule bromodomain inhibitor

Fig. 4 Bromodomain proteins and their inhibitors.

Helin & Dhanak. 2013 *Nature* Chromatin proteins and modifications as drug targets

> Filippakopoulos et al. 2010 *Nature* Selective inhibition of BET bromodomains

Fig. 3a The acetyl-lysine binding pocket of BRD4(1) is shown as a semitransparent surface with contact residues labelled and depicted in stick representation. Carbon atoms in (+)-JQ1 are coloured yellow to distinguish them from protein residues. Distinguishing surface residues are shown in red; the family conserved asparagine is shown in blue.

Genomic aberrations in chromatin remodeling-related genes

SMARCA4 (BRG1)

SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4

Genomic aberrations in chromatin remodeling-related genes

ARID1A (BAF250) AT rich interactive domain 1A (SWI-like)

Epigenomic aberrations in chromatin remodeling-related genes

SMARCA2 SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 2

Transcriptome

RNA-seq:

- ✓ Gene expression profiles
- ✓ Fusion transcripts

Gene expression profiles from RNA-seq

	Used sequences	Num of genes			
	(Read1)	>1 RPKM	>5 RPKM		
PC-3	49,914,547	12,205	9,240		
PC-7	50,925,975	12,129	9,009		
PC-9	34,167,521	12,817	9,532		
PC-14	53,977,381	12,169	9,037		
RERF-LC-Ad1	56,406,046	12,298	9,206		
RERF-LC-Ad2	45,580,359	12,392	8,804		
RERF-LC-KJ	60,803,665	12,054	8,938		
RERF-LC-MS	52,715,099	13,045	9,090		
RERF-LC-OK	33,086,988	12,309	8,954		
VMRC-LCD	45,944,953	12,502	8,711		
ABC-1	37,993,504	11,715	8,384		
LC2/ad	43,665,988	12,366	9,206		
II-18	63,869,445	11,955	9,038		
A549	20,440,396	12,155	8,998		
A427	41,895,881	11,866	9,011		
H322	54,487,583	12,457	9,351		
H2228	56,465,940	12,409	9,106		
H1299	51,120,991	11,735	8,958		
H1437	49,890,034	12,275	8,921		
H1648	38,908,100	12,604	9,317		
H1650	26,635,691	12,716	9 <i>,</i> 595		
H1703	87,705,180	11,736	8,695		
H1819	75,262,673	12,494	9,185		
H1975	36,195,247	12,715	9,634		
H2126	46,862,796	12,143	9,016		
H2347	50,325,156	12,278	9,030		

Genome

Transcriptome

Genomic mutations on CDS and gene expression

Aberrant splicing patterns in tumor-suppressor genes

Examples of aberrant splicing patterns

RBM10 was reported

mutated gene in lung adenocarcinoma

(Imielinski et al. 2012

as a frequently

Cell).

H2347 WGS H2347 RNA PC-9 RNA

RBM10 RNA binding motif protein 10

H2347; Intron 20, donor, GT>TT; Intron read-through (p.V785_splice)

KDM5A lysine (K)-specific demethylase 5A

ABC-1; Intron 3, acceptor, AG>TG; Exon skipping UPF1 UPF1 regulator of nonsense transcripts homolog (yeast)

Exon skipping

PTPRJ protein tyrosine phosphatase, receptor type, J

Known oncogenic fusion transcripts

CCDC6-RET fusion in LC2/ad

		_	Coordir	nates	Spanning	Spanning	Spanning pairs	
Cell line	e Fusion	Chrom	Chrom Strand	On the left	On the right	reads	pairs	where one end spans a fusion
LC2/ad	CCDC6-RET	chr10-chr10	rf	61,665,879	43,612,031	184	27	98

From the RNA-seq data, known driver fusion transcripts such as CCDC6-RET in LC2/ad were identified (Matsubara et al. 2012; Takeuchi et al. 2012; Suzuki et al. 2013).

ALK-related fusions (ALK-PTPN3, EML4-ALK) in H2228

From the RNA-seq analysis, ALK-PTPN3 fusion was detected in H2228 cell line as reported in the previous study (Jung et al. *Genes Chromosomes Cancer* 2012). EML4-ALK was also previously reported and detected by RT-PCR but not detected by the computational analysis.

Novel fusion transcripts

ERGIC2-CHRNA6 in H1437

ERGIC2 ERGIC and golgi 2 CHRNA6 cholinergic receptor, nicotinic, alpha 6 (neuronal)

L: Ladder, H: H₂O

•					- 55	kb	<u></u>	
	42,000 Hb	1	42,610 Hb	1	42,620 Hb	1	42,630 Hb 42,6	40 HD - 42,
(D - 13)				_		_	PC-	3
(0 - 32)							PC-	7
(0-24)							PC-	9
(D-11)							PC-	14
p-39							RERF-L	C-Ad1
p-21							RERF-L	C-Ad2
h-3d							RERF-L	.C-KJ
11-11							RERF-L	C-MS
p. 740	6))						RERF-L	C-OK
(1-24)							VMRC-	LCD
gi- 4i1							ABC	-1
(D-14)							LC2/	ad
(i) - 4/j			10				II-1	8
(1-54)	Q						A54	9
月-1月							A42	7
10-12							H32	2
(0-14)			• •				H22	28
(D-10)							H12	99
月-25万			A	1.01	0.07656		H143	37
(U-27)		-		de ale	- deal		H16	18
(D - 17)			• •				H16	50
10-15							H17	03
10-05				-			H18	19
(0-62)	15						H19	75
(2 - 18)							H21	26
10-54							H23	17

Transcriptome

EFHD1-UBR3 in PC-9

WGS

EFHD1 EF-hand domain family, member D1 UBR3 ubiquitin protein ligase E3 component n-recognin 3 (putative)

Differentially expressed genes in 26 cell lines

	Num d	160 -	
	High expression	Low expression	140 -
	(>4 fold of avg.)	(<1/16 fold of avg.)	120 - 5 100 -
PC-3	554	2,323	AX 80 -
PC-7	731	2,700	60 - 40 -
PC-9	277	1,504	40 - 20 -
PC-14	264	2,019	0 +
RERF-LC-Ad1	240	1,661	C23
RERF-LC-Ad2	477	1,583	
RERF-LC-KJ	293	2,178	
RERF-LC-MS	403	918	90 🚽
RERF-LC-OK	573	2,109	80 - 70 -
VMRC-LCD	871	1,818	60
ABC-1	346	2,636	동 50 - 단 40 -
LC2/ad	160	1,527	30
II-18	203	2,478	10 -
A549	242	1,968	0 🕇
A427	304	2,869	
H322	241	1,828	
H2228	304	1,663	12 🚽
H1299	279	2,775	10 -
H1437	341	2,007	8 -
H1648	226	1,389	₩ МД 6 -
H1650	328	1,511	۲۲ 4 –
H1703	170	2,697	2 -
H1819	512	1,626	0 -
H1975	248	1,587	Ċ
H2126	315	2,033	
H2347	251	1,739	

*Total 16,573 genes were used in this analysis: Avg. RPKM > 0, ≥1 cell lines with >1 RPKM

Differentially expressed genes in 26 cell lines

細胞株によってdifferentially expressed geneの数に差がある。

Epigenome(1)

Target captured-bisulfite sequencing:

✓ DNA methylation profiles in regulatory regions
Target captured-bisulfite sequencing

Approximately 100 million mapped reads (50 million pairs) were obtained in each cell line.

Average depth: 109.7 x10 coverage: 91% (Total length of the bait regions: 84Mb)

	Mapped	Denth	Coverage	Conversion	CnG sites
	sequences	(avg)	(x10)	rate (x5)	(>x5)
	(R1+R2)	(0.18)	(//=0)		(* 7.07
PC-3	157,902,653	161.4	0.93	0.99	3,673,159
PC-7	109,919,011	110.9	0.93	0.99	3,418,929
PC-9	87,012,056	89.6	0.90	0.99	3,231,320
PC-14	204,216,479	210.3	0.96	0.99	4,064,068
RERF-LC-Ad1	87,043,746	89.1	0.90	0.99	3,264,395
RERF-LC-Ad2	78,300,691	83.0	0.92	0.99	3,448,211
RERF-LC-KJ	72,844,738	74.9	0.88	0.99	3,068,971
RERF-LC-MS	102,938,936	109.0	0.94	0.99	3,598,662
RERF-LC-OK	161,552,507	165.0	0.95	0.99	3,758,532
VMRC-LCD	84,681,570	89.5	0.91	0.99	3,136,774
LC2/ad	112,097,386	116.0	0.93	0.99	3,548,548
ABC-1	93,158,547	93.1	0.93	0.99	3,493,903
II-18	99,682,438	165.0	0.91	0.99	3,327,001
A549	87,966,180	91.0	0.91	0.99	3,324,364
A427	53,499,542	54.3	0.81	0.99	2,614,641
H322	153,896,186	165.8	0.95	0.99	4,161,775
H2228	122,705,759	81.6	0.90	0.99	4,815,543
H1299	118,923,875	82.2	0.91	0.99	4,533,930
H1437	98,311,209	63.1	0.88	0.99	4,382,225
H1648	102,033,841	104.4	0.91	0.99	3,357,747
H1650	105,694,196	109.4	0.93	0.99	3,460,378
H1703	127,897,486	81.6	0.91	0.99	5,513,896
H1819	220,008,485	223.4	0.95	0.99	4,085,231
H1975	79,688,628	81.7	0.91	0.99	3,274,116
H2126	124,651,437	80.2	0.90	0.99	4,991,289
H2347	115,973,241	76.1	0.89	0.99	4,661,415

Depths and coverage were calculated using BEDTools (Quinlan AR and Hall IM. 2010 *Bioinformatics*).

Conversion rate: (TA+TT+TC) / (CA+CT+CC+TA+TT+TC).

Average methylation rates in each cell line

CpG islandsは、低メチル化。 CpG islands以外のCpG siteのメチル化率は、cell lineによって異なり、variationがある。

Histone modification & RNA Polymerase II binding status PC-9

ChIP-seq

Mapped sequences (avg. of 26 cell lines)

 WCE
 H3K4me3
 H3K9/14ac
 Pol II
 H3K36me3
 H3K4me1
 H3K27ac
 H3K27me3
 H3K9me3

 19,100,553
 26,140,455
 19,596,187
 26,056,772
 24,264,604
 25,900,257
 25,690,276
 21,584,812
 21,155,573

MACS2 peaks (avg. of 26 cell lines)

	H3K4me3	H3K9/14ac	Pol II	H3K36me3	H3K4me1	H3K27ac	H3K27me3	H3K9me3
narrow peaks	21,209	34,374	15,715	107,708	108,882	61,061	53,587	39,559
narrow & broad peaks	16,208	3 23,753	13,997	47,710	75,854	38,297	42,163	51,760

Replicates

H1975 H3K4me3 rep#1: 130705_Hiseq3A rep#2: 130625_Hiseq3A control (WCE): 130625_Hiseq3A

*±1.5 Kb from TSS r: Pearson correlation coefficient

Comparison with ENCODE data

ENCODE DCC (Data Coordination Center)

Our dataset: 120531_SangiB Our dataset control (WCE): 120626_SangiA ENCODE rep#1, rep#2: wgEncodeEH001905 (DCC Acc) ENCODE control (standard control): wgEncodeEH001904

ChromHMM

Using ChromHMM, chromatin states were detected and characterized from ChIP-Seq data of the eight chromatin marks.

ChromHMM: a program for the learning chromatin states using a multivariate Hidden Markov model

Ernst et al. 2011 *Nature* Ernst and Kellis. 2012 *Nat methods*

ChromHMM on IGV (EGFR)

Candidate state annotation

1	Active promoter
2	Weak/poised promoter
3	Strong enhancer
4	Weak enhancer
5	Transcriptional elongation
	Inactive region
7	Inactive region/heterochromatin
8	Low/no signal

Chromatin states around TSS of EGFR

chr7

	p21.3 p	15.2 p14.1	p11.2	q11.23	q21.2 d	22.3 q31.32	q33 q35 q36	
	55,082 kb	55,084 kb I I	55.08 I I	— 12 kb ^{6 kb} I	р 55,088 kb I	55,090 kb	55,092 kb	. 4
RefSeq Genes				-	· ·	EGFR	· · · ·	́нз
PC-7	8			6			8	
VMRC-LCD	8	6		2	6		8	
PC-3	8	(5 8	2	26		8	
PC-9		7	3		1		3	

Active chromatin marks

 H3K4me3	Pol II	H3K36me3
×	×	×
0	×	×
0	0	×
0	0	0

Differentially methylated genes in 26 cell lines (example)

IGF1R insulin-like growth factor 1 receptor

Epigenome

EGFR epidermal growth factor receptor

PC-7: Non-adherent cell

	RNA-Seq	ChIP-Seq H3K4me3	ChIP-Seq Pol II	ChIP-Seq H3K36me3
	chr7 p21.2 p14.2 p11.2 q21.11 q22.2 q31.33 q35	chr7	chr7	chr7
		▲ 324 kb → → → → → → → → → → → → → → → → → →	◄ 324 kb ► kb 55,100 kb 55,200 kb 55,300 kb I I I I I	
PC-3	0.65 RPKM	[0 - 23]	[0 - 5.00]	10-1.00 La, L. Mithell, X. J. J. J. J. J. J. L. Hubert L. van Jul. 1, July , Joy
PC-7 G403V	0.01 RPKM		والمرابع المراجع	10- 0.22]
PC-9 E746 A750d	el ¹⁰⁻⁷⁸⁶ 65.1 RPKM	[0 - 213]	[0 - 42]	(0 - 48)
PC-14	49.8 RPKM	[0 - 92]	[0-9.37]	(0 - 5.79)
RERF-LC-Ad1	53.0 RPKM	[0 - 179]	[0 - 22]	[0 - 51]
RERF-LC-Ad2	114.1 RPKM	[0 - 107]	[0 - 73]	(0 - 56)
RERF-LC-KJ	^[0-680] 32.4 RPKM	[0-141]	[0 - 57]	(0 - 26)
RERF-LC-MS	^[0-443] 24.3 RPKM	[0 - 184]	[0 - 15]	(0 - 16)
RERF-LC-OK	^[0-436] 35.0 RPKM	[0 - 133]	[0-35]	(0 - 24)
VMRC-LCD	0.59 RPKM	[0 - 34]		
ABC-1	73.1 RPKM	[0 - 69]	[0-6.1]	[0 - 7.60]
LC2/ad	14.7 RPKM	[0 - 25]	[0 - 4.30]	[0 - 3.84]
I⊩18 L62R, L858R	0 4 RPKM	[0 - 77]	[0 - 23]	[0 - 22]
A549	68.3 RPKM	[0 - 199]	[0-17]	
A427	19.8 RPKM	[0 - 189]		[0 - 20]
H322	^[0-1815] 80.5 RPKM	[0 - 84]	[0 - 6.89]	[0 - 16]
H2228	^[0-1007] 42.6 RPKM	[0 - 285]	[0 · 145]	[0-41]
H1299	^[0-716] 35.8 RPKM	[0 - 71]	[0 - 16]	[0 - 17]
H1437	(0- 858) 49 0 RPKM	[0 - 81]	[0-6.05]	
H1648	^[0-587] 37 3 RPKM	[0 - 289]	[0-20]	
H1650	^[0-634] 73.1 RPKM	[0 - 248]		0-50
H1703 E746_A750		[0-88]	[0-18]	(0-27)
H1819		[0 - 256]	(0 - 25)	
H1975 L858R. T79		[0 - 378]		(0-96)
H2126		[0 - 70]	[0-43]	[0 - 15]
H2347		[0 - 260]		
				A A A A A A A A A A A A A A A A A A A
PefSeg Genes				
Included Gelles	EGFR EGFR-AS1	EGFR EGFR-AS1	EGFR EGFR-AS1	EGFR EGFR-AS1
		all line H2K4ma2		

Cell line	H3K4me3	Pol II	H3K36me3
PC-7	×	×	×
VMRC-LCD	0	×	×
PC-3	0	Δ	×

STK11遺伝子についての遺伝子発現異常パターン

Whole-genome

RNA-Seq

ChIP-Seq H3K4me3 ChIP-Seq Pol II ChIP-Seq H3K36me3

	chr19	chr19	chr19	chr19	chr19
	p13.2 p12 q12 q13.2 q13.4	p13.2 p13.11 p11 q12 q13.12 q13.31 q13.41	p13.2 p12 q12 q13.2 q13.4;	p13.2 p12 q12 q13.2 q13.4;	p13.2 p12 q12 q13.2 q13.4;
		≪		28 kb	28 kb►
	i kb 1,210 kb 1,220 kb 1,2	kb 1,210 kb 1,220 kb 1	ikb 1,210 kb 1,220 kb 1,2 	i kb 1,210 kb 1,220 kb 1,2 	i kb 1,210 kb 1,220 kb 1,2 I I I I I
PC-3 F223V	10-79 see you prove the first sector and the sector	0-618)	(0 - 85)	(0 - 25)	
PC-7 T250P	0-79 and a set and a set and a latter of the	⁽⁰⁻⁵¹⁸⁾ 30.0 RPKM	[0 - 27]	[0 - 1.51]	(0 - 1.83)
PC-9	10-511	15.5 RPKM	(0 - 99)	[0 - 12]	(0-5.05)
PC-14	10-90	^[0-433] 24.0 RPKM	(0 - 80)	[0 - 11]	(0-1.86) - 1.96 (0.1.1) (0.1.1) (0.1.1) (0.1.1)
RERF-LC-Ad1	10-67	⁽⁰⁻⁷⁷²⁾ 33.7 RPKM	(0 - 265)	[0 - 22]	[0-19]
RERF-LC-Ad2	10-57	15.8 RPKM	[0 - 96]	[0 - 29]	[0-10.00]
RERF-LC-KJ	[0 - 85]	⁽⁰⁻⁸⁰⁾ 2.8 RPKM	[0 - 96]	[0 - 24]	
RERF-LC-MS	- 41]	0.01 RPKM		10-1.96]	10 ^{-7.38]}
RERF-LC-OK	9:09 al de particulation de la definition	0-346 25.3 RPKM	[0 - 94]	[0 - 33]	[0-7.11]
VMRC-LCD	0-65	(0-430) 28.8 RPKM	[0 - 94]	[0 - 9.89]	[0-6.11]
ABC-1	10-121	(0-336) 25.3 RPKM	[0 - 62]	[0 - 5.56]	
LC2/ad	P.79	^[0-462] 27.1 RPKM	[0 - 15]	[0-4.00]	[0-3.02]
II-18	(8 - 53) al-tabilitan landra da standarda da la	0.26 RPKM		[0-4.10]	[0-0.70]
A549 Q37*	19 and 1 and 1 and 1 and 1 and 1 and 1	(0-91) 12.6 RPKM	(0 - 162)	[0 - 12]	(0-7.98)
A427	0 - 49]	0.78 RPKM	[0 - 10.00]		[0-14]
H322	19759 realized and a standard strategy of the strategy of	(0-520) 27.6 RPKM	[0-44]	[0 - 3.61]	(0-4.06)
H2228	0.55 last states that a state state state	(0-815) 35.4 RPKM	(0 - 170)	[0 - 62]	[0 - 13]
H1299	10:30 In	(0-513) 28.5 RPKM	[0 - 46]	[0 - 9.36]	(0-6.00)
H1437	R:29.1	16.9 RPKM	[0 - 51]	[0 - 4.03]	[0-222]
H1648	19:59 In the sector first and by an and sector	0-509 36.0 RPKM	(0 - 220)	[0 - 9.61]	[0-5.70]
H1650	0-39	(0-135) 13.6 RPKM	(0 - 178)	[0 - 35]	(0-9.00)
H1703	40-106 million and a standard branch state	(0-1584) 40.5 RPKM	[0 - 134]	[0 - 13]	(0-11) http://www.e.e.e.e.e.e.e.e.e.e.e.e.e.e.e.e.e.
H1819	Pitting the physical design of the later of the second sec	(0-638) 19.4 RPKM	[0 - 85]	[0-4.00]	(0 - 18)
H1975	0.99 to second the advantation of the second	(0-474) 35.9 RPKM	(0 - 297)	[0 - 30]	(0-22)
H2126	Patha militantinana statika	^[0-121] 8.6 RPKM	(0 - 67)	[0 - 39]	[0-4.50]
H2347	P-49 In the second second second second second	^[0-551] 28.8 RPKM	[0 - 198]	[0 - 10.00]	(0 - 31)
RefSeq Genes					
	SIK11	STK11	SIK11	51K11	SIK11

ゲノム異常 遺伝子発現異常

エピゲノム異常

CDKN1A cyclin-dependent kinase inhibitor 1A (p21, Cip1)

ゲノム変異はないが、DNAメチル化やヒストンのrepressive markで発現が制御されている

Negative correlation between DNA methylation rates and expression levels

CDKN2A (p16^{INK4a})

*FPKMs of p16 and p14 were calculated using TopHat2-Cufflinks.

Expression levels of p14^{ARF} and p16^{INK4a}

ERBB2 v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2

Integrated analyses

Coll line -	FPKM					
	NM	_004448	NM	_001005862		
PC-3		67.2		7.1		
PC-7		0.00025		33.9		
PC-9		56.0		3.0		
PC-14		40.0		5.5		
RERF-LC-Ad1		85.3		6.1		
RERF-LC-Ad2		205.1		10.4		
RERF-LC-KJ		273.1		4.1		
RERF-LC-MS		52.2		4.9		
RERF-LC-OK		57.7		1.5		
VMRC-LCD		2.0e-5		4.7		
LC2/ad		102.9		1.5		
ABC-1		271.3		1.9		
II-18		112.3		4.5		
A549		22.5		1.1		
A427		60.8		2.1		
H322		265.3		6.9		
H2228		19.9		1.8		
H1299		28.1		2.1		
H1437		94.2		5.3		
H1648		141.9		6.2		
H1650		207.8		4.4		
H1703		73.8		2.0		
H1819	1476.2			11.0		
H1975		98.0		3.9		
H2126	227.1			5.6		
H2347		118.5		4.7		

PC-7とVMRC-LCDでは、NM_04448の転写開始点付近がDNAメチル化を受けている →NM_04448が発現していない。PC-7はNM_001005862の発現量が高め。

*FPKMs were calculated using TopHat2-Cufflinks.

Gene Expression of Alternative Promoters of the ERBB2 gene

p21遺伝子についての遺伝子発現異常パターン

<u>Summary</u>

<u>情報提供</u>

新機器・新技術=>止まらない技術革新

新しいプロトコール (Stranded, MatePair, BRIC...)

シングルセル解析:フリューダイムC1システム

統合解析のモデルケース=> 遺伝子に固有のサイレンシング機構

肺腺がん培養細胞をモデルとして

->機能解析/スクリーニングの場としての培養細胞情報の整備

<u>情報の統合=> 情報の統合化による知識発見</u>

多階層オミクスデータベースの構築:

->疾患ヒトゲノム変異の生物学的機能注釈を目指して

ACKNOWLEDGEMENTS

イルミナの運用とデータ基礎解析:

菅野研(東大)

DBTSSの作成と解析:

中井研(東大)

イルミナ解析技術の開発:

秋光研(東大)

* イルミナ:

菊田寛

鈴木健介

がんリシークエンス・統合解析:

土原研(がんセンター東病院)

がん細胞解析:

河野研(がんセンター)

マラリア原虫の解析:

杉本研(北大)

*アジレント:

箕浦加穂 田谷敏貴