2015年10月2日 イルミナサポートウェビナー

NGSをはじめよう! BaseSpace で行う RNA-seq 入門 < TopHat/Cufflinks編>

Cufflinks Assembly/ Diff. Exp

イルミナ株式会社 バイオインフォマティクス サポートサイエンティスト 癸生川絵里 (Eri Kibukawa)

© 2013 Illumina, Inc. All rights reserved. Illumina, IlluminaDx, BaseSpace, BeadArray, BeadXpress, cBot, CSPro, DASL, DesignStudio, Eco, GAIIx, Genetic Energy, Genome Analyzer, GenomeStudio, GoldenGate, HiScan, HiSeq, Infinium, iSelect, MiSeq, Nextera, NuPCR, SeqMonitor, Solexa, TruSeq, TruSight, VeraCode, the pumpkin orange color, and the Genetic Energy streaming bases design are trademarks or registered trademarks of Illumina, Inc. All other brands and names contained herein are the property of their respective owners.

本日の内容

- ₀ RNA-seq 解析の概要
- 。BaseSpaceの
 - デモデータとRNA-Seq コアアプリ
- o TopHatアプリによる解析
- Cufflinks & DEアプリによる解析
- 。実験デザインの解析結果への影響

RNA-seq 解析ワークフロー 概要 ->リファレンスゲノムがあるかないか?

Sci China Life Sci. 2011 Dec;54(12):1121-8. Epub 2012 Jan 7.

マッピングと発現解析

▶特定の遺伝子領域にマップされたリードの数

= 遺伝子転写産物の存在量

に対応していると考える

RNA-Seq 典型ワークフロー

サンプル毎の配列データ

サンプル毎のリードを リファレンス配列に対してアライメント

サンプル毎に リファレンスの遺伝子領域ごとに マップされたリード数をかぞえる

サンプル群 vs サンプル群で 発現の差異をみる

RNA Seq アライメント工程 (例

アライメント

サンプル毎のリードを リファレンス配列に対してアライメント

リファレンスゲノムへのアライメント

既知スプライスジャンクション を考慮したアライメント

illumina

RNA Seq アライメント

アライメント

サンプル毎のリードを リファレンス配列に対してアライメント

アライメントツールは、スプライスジャンクションを考慮したマッピングが必要 計算量が大きくなるので、ツールによって、それぞれ考慮の仕方の工夫を凝らしている

illumina

メンテナンスが必要。

例) BaseSpace TopHat アプリの結果 既知遺伝子についての発現リストが得られる

発現リスト => <u>FPKM</u>リスト

RNA-Seq 発現量の測定と正規化

RPKM

遺伝子長(全exon長)を1000bpで、リード総塩基数 は1M の場合となるように、 数えたリード数を標準化する考え

RPKM : <u>Reads</u> Per <u>Kilobase</u> of exon per <u>Million</u> of mapped reads

(対象遺伝子にマップされたリードの塩基数) x 1,000 x 1,000,000

(マップされたリード総塩基数) x (対象遺伝子の長さ)

X Ali Mortazavi, Brian A Williams, Kenneth McCue, Lorian Schaeffer and Barbara Wold Mapping and quantifying mammalian transcriptomes by RNA-Seq Nature Methods, Volume 5, 621 - 628 (2008)

illumina

合わせて10の9乗

遺伝子発現レベルを比較するための正規化の考え方 ①リード総数の影響を考慮する

▶発現量の計算はそのサンプルがマップされたリード数、総リード数 (read depth) に影響される

遺伝子発現レベルを比較するための正規化の考え方 ② 遺伝子長の影響を考慮する

▶リードカウント数は遺伝子の長さ(全exonの長さ)にも影響される ▶長ければ長いほどリードがマップされる数が多くなり易い

< 異なる3つの遺伝子を想定 >

RNA-Seq 発現差解析

DF

サンプル群 vs サンプル群で 発現の差異をみる

リード数を数え、正規化した数値をもとに

統計検定を行い発現差異をみていく

log/feentral FPRAR

サンプル群A

※ 採用統計モデルは使用する ツールにより様々であり、 開発が続けられている

RNA Seqでも複数アプリを搭載しているので 異なる統計モデルをお試し頂けます

もっと詳しく知りたい! イルミナウェビナー RNA-Seqをはじめよう!シリーズ

http://www.illuminakk.co.jp/events/webinar japan.ilmn?ws=ws

また演者の門田先生のサイトには、より新しく詳細なフォローアップがあり大変参考になります

http://www.iu.a.u-tokyo.ac.jp/~kadota/r seg.html • 門田幸二、「トランスクリプトームデータ解析戦略2014 (PDF版; YouTube版)」, イルミナウェビナー・RNA-Seqシリーズ, イルミナ株式会社(東京), 2014.07.22 内容:イルミナウェビナーにて2011年9月8日と2011年11月17日に行ったRNA-seg周辺のアップデート情報提 供がメイン。 その後のイルミナウェビナーシリーズを眺めることやアグリバイオインフォマティクスでの私の大 学院講義PDF資料のありか(このページのこと)。RNA-seqのおさらい。 トランスクリプトーム解析技術(wet (側)の進展話。マイクロアレイもヒトトランスクリプトームアレイが出ていること、RNA-seqはIlluminaも short-readからmedium-readへ。 PacBioロングリードのトランスクリプトーム配列を読んだ論文が出始めており、パーソナルゲノムに引き続いてパーソナルトランスクリプトームの時代に来ていることなど。 トランスクリ プトーム解析技術(dry側)の進展話。遺伝子構造推定系では有名なTophat-Cufflinksパイプライン以外にも多数 のよりよいパイプラインが存在すること。 DDBJパイプラインやBaseSpaceを利用することで、Linux-freeで Tophat-Cufflinksパイプラインを実行可能であること、しかしそれ以外の多くはLinuxベースであるため、 利用 したい場合にはLinuxを使いこなせたほうがやはりよいということ。転写物の発現量推定もReXpress、RNA-Skimなどより便利かつ高速に実行できる時代がきていることなど。カウントデータ取得後の発現変動解析は edgeRやDESeqが有名だが、TCCは実質的にiterative edgeRやiterative DESeqに相当するものであり、 compcodeRによる客観的な性能評価でも優れていることなど。 性能評価に用いたRコード は20140722 compcodeR.txt。 1時間分。 門田幸二,「講義資料」,アグリバイオインフォマティクス教育研究プログラムの大学院講義科目:農学生命情報 科学特論I, 東京大学(東京), 2014.07.02 内容: <u>教科書</u>の3.3節と4.3節周辺。 マッピングプログラムは大きくbowtieなどのbasic aligner (unspliced aligner)とtophatなどのsplice-aware aligner (spliced aligner)に大別されること。 splice-aware alignerの基本的なイメージ。ゲノム配列既知の場合の遺伝子構造推定としてTophat-Cufflinksパイプラインの基本形を紹 介。 既知遺伝子(または転写物)の発現解析でよい場合は、トランスクリプトーム配列へのマッピングでよい。 最近はSailfishやRNA-Skimなど、k-merに基づくalignment-freeな方法が注目されていることなど。 研究目的 別留意点として、 遺伝子間比較の場合とサンプル間比較の場合、配列長補正、総リード数補正、RPKMなど。 長い転写物ほどマップされるリード数が多い傾向をRで確認。GSE42212のヒトRNA-seqデータのFASTQファイ ル取得以降の一通りの解析。実際に行ったのは、カウントデータ取得以降のTCCパッケージを用いたサンプル間 クラスタリング、発現変動遺伝子(DEG)同定。 M-A plotのおさらい。結果の解釈。FDR、分布やモデルの説 明。倍率変化でDEG同定を行う場合との比較。 2コマ(2×90 min)分。 13

可視化やアノテーション

	Download Analysis Rename analysis. Move to Trash	Tevr Trash 🗎
Analysis Info	Choose from the top differentially expressed (and optionally requested) genes	in the analysis: NextBio Annotates RNA-Seq
Inputs	NEUROD1 (-8.71)	ILLIMINA
Output Files		
	Gene NEUROD1	
	Fold Change (log2) -8.71	
Analysis Reports	Description This gene encodes a member of the NeuroD fa articides transmission of pages that contain a s	mily of basic helix-loop-helix (bHLH) transcription factors. The protein forms heterodimers with other bHLH proteins and pecific DNA sequence known as the E-hoy. It requisites expression of the insulin gene, and mutations in this gene result
	in type II diabetes mellitus. [provided by RefSe	venue over sequeine movin as the prover integrates expression of the insulin gene, and mutations in this gene result q]
topDegenes	Synonyms class A basic helix-loop-helix protein 3: basic he	elix-loop-helix transcription factor: beta-cell E-box transactivator 2::BETA2::BHF-1::bHLHa3::NEUROD::neurogenic
	differentiation 1::neurogenic differentiation fac	tor 1::neurogenic helix-loop-helix protein NEUROD::neuronal differentiation 1::MODY6
	Genomic Location Chr 2: 182249439-182253626	
	Most Correlated Tissues	Most Correlated Diseases
	1. Cerebeller hemisphere	1. Diabetes mellitus type 1
	2. Cerebellar vermis	2. Diabetes mellitus
	3. Cerebellum	3. Disorder of endocrine pancress
	4. Cerebellum peduncles	4. Allergic disorder
	5. Pons	5. Measles
	Most Correlated Compounds	Most Correlated Gene Perturbations
	1 Cledronic Arid	1 NEUROD1
	2. Thiodio Add	2. SETDB1
	3. Tetanus Toxin	3. FBR1
	4. Sumatriptan	4. BLC19A1
	5. Cholera Toxin	6. Irf9
	Most Correlated Studies	
	1. Well-differentiated thyroid tumors DNA methylation profiles	
	Well-differentiated thyroid tumors DNA methylation profiles Non-small cell lung cancer expression profiles	

可視化、アノテーション他

http://res.illumina.com/documents/products/technotes/technote-basespace-rna-seq.pdf

illumina

その他ツールのリストアップ

http://seqanswers.com/wiki/Software/list

http://seqanswers.com/wiki/RNA-Seq

TT						
IMI	RNA-Seq			Read View	form View source View hi	story
SEQ an swers Forums	The bioinformatics applica Definition:	ations assigned the Biological domain RNA -	Seq (topic_\$170 @) are tabulated below.			• DEBLIGGING: BioPortal search @
wiki navişation Main paşe Recent chanşes Random paşe Help	A topic concerning hig are expressed, detect Synonyms: WTSS Small RNA-Seg	kr-throughput sequencing of cDNA to measu post-transcriptional mutations or identify ge	re the RNA content (transcriptome) of a sample ne fusions.	le, for example, to investigate how	different alleles of a gene	DEBUGGING: BioPortal looks
Software	• Whole transcriptome s	hotgun sequencing				
• Toolbox	• RNA-seq • Small RNA-seq					
	Query returned 46 results	Biological domain	Bioinformatics method	• Input format	Output format	
	ArrayExpressHTS	RNA-Seq RNA-Seq Quantitation		FASTQ		
	Avadis NGS	ChIP-Seq DNA-Seq RNA-Seq Small RNA Pathway analysis	Alignment Quality Control Sequence analysis Visualization Biological Contextualization	SAM BAM BED ELAND FASTA FASTQ		
	Chipster	ChIP-Seq RNA-Seq MiRNA-Seq MeDIP-Seq	QC Filtering Trimming Mapping Peak calling Motif detection Differential expression Pathway analysis Methylation analysis Genomic region matching Genome browser	FASTQ SAM BAM BED GTF	FASTQ SAM BAM BED GTF	
		Genomics Whole Genome Resequencing	Mapping Assembly Alignment Colorspace	FASTA	FASTA FASTQ GFF	

様々なサードパーティーツールのご紹介

http://res.illumina.com/documents/products/datasheets/datasheet_rnaseq_analysis.pdf

可視化、アノテーション他

Table 1: RNA-Seq Analysis Tools

Tool or Suite	Description	Availability	Link
Galaxy	Free form-based access to Bowtie, TopHat, and Cufflinks. Web browser client.	Academic/Open Source	galaxy.psu.edu
GenePattern	Free form-based access to Bowtie, TopHat, and Cufflinks. Local client.	Academic/Closed Source	www.broadinstitute.org/cancer/ software/genepattern
Partek	Advanced statistics and interactive visualization for microarray and sequencing data.	ive visualization for Commercial	
CLC Bio	Software analyzing and visualizing sequencing data	Commercial	www.clcbio.com
GeoSpiza	Cloud-based analysis for microarray and sequencing data	Commercial	www.geospiza.com
GenomeQuest	Software for sequence data management	Commercial	www.genomequest.com
Avandis NGS	Software for sequence data analysis and management	Commercial	www.avadis-ngs.com
Ingenuity IPA	Software for biological pathway analysis	Commercial	www.ingenuity.com/products/ pathways_analysis.html

Open Source Tools

イルミナ RNA-Seqワークフローの例

BaseSpaceの Public Data(公開デモデータ)とアプリ

アプリをブラウザから楽に実行。 解析パラメータやアプリを変更し簡単に 解析を再実行.メール通知を待つだけ.

http://basespace.com からログイン 初めての方はSign up から簡単に登録いただけます。

公開デ	モデータ (BaseSpace CloudのPublic	D :	ataにあ	り)
BaseSpac	Ce' 🗮 🛣 🖬 🖿 🚖 📶 ? Dashboard Prep Runs Projects Apps Public Deter Help	٩	🦸 Eri Kibukawa 🕶	illumına [.]
> HiSeq 2500	: TruSeg Stranded mRNA LT (SEQC: UHR & Brain)		Research A	eas
Lineses.			Cancer Research	Genetic Disease
> HiSeg 2000 RNA-Seg Diffe	: TruSeg Stranded Total RNA (MAQC) rential Expression		Complex Disease	Microbial Research
NextSeq 50 NextSeq 500 da prepared using RNA-Seq	DD: RNA-Seq (8plex) Ita generated for reference human brain RNA and universal human reference RNA (UHRR). Libraries were TruSeg stranded mRNA or TruSeg Total RNA with Ribo-Zero Gold reagent kits.		Categories	Resequencing
Run Project	NextSeq 500: RNA-Seq (8plex) (49.41 GB) Import NextSeq 500: RNA-Seq (8plex) () Import		Small RNA	Targeted Sector Ling
			De Novo Assembly	RNA-Seq
			Gene Fusion Detection	Chur-seq
Dusis			Methyl-Seq	Metagenomics
Proje 解析約 宝際/	ctを1 ンボートして頂さまりと、既に終了している 結果から、レポート等を見ていただけるとともに、 ニアプロを実行いただくことも可能です		Tumor Normal	Variant Analysis
天际	こ) ノリ を天11 いたに く こ と む り 肥 じ 9 。		Differential Expression	Quality

イルミナはBaseSpace 上にRNA Seq 用の 3つのアプリをご提供しています

手法	BaseSpace アプリ	アイコン	内容
RNA-Seq	TopHat アライメ ント		 業界標準のTopHat2を使ったRNA-Seqアライメントとカウンティング 融合遺伝子のコール(オプショナル) ISAAC Variant Callerを使ったcSNPコール 結果はCufflinks Assembly & DE Appでさらに解析可能
	Cufflinks アセンブ ル & 遺伝子発現解 析	→	 詳細遺伝子発現差解析 選択的転写産物のアセンブルと新規転写産物予測
	RNAExpress		 迅速な遺伝子発現プロファイルをSTARアライメントとDESeq2で実現 遺伝子レベルの遺伝子発現に特化

- リファレンスは現在 hg19, mm10, rn5
- 遺伝子構造は、RefSeqとGENCODEを選択可
- カスタムリファレンスはアップロードできない(2015/10現在)

アプリの違い: 主要機能面

24

	機能	TopHat/ Cufflinks F	RNA Express
\bigcirc	シーケンス量のフィルター	- あり	あり
\bigcirc	シーケンスアライメント	あり	あり
	変異コール	あり	なし
	融合遺伝子コール	あり	なし
	転写産物アセンブル	あり	なし
	遺伝子量予測	あり	なし
	転写産物量予測	あり	なし
\bigcirc	<u>遺伝子発現差の解析</u>	あり	あり
		高機能、詳細解析の実行	かんたん、速い

* RNA ExpressやBaseSpaceの動画による操作感ご紹介につきましては、 サポートウェビナー2014/10/17 RNA Seqをはじめよう!をご参考下さい。

TopHat Alignment + CufflinksAssembly&DE による ワークフロー の 内包ツール

使用ソフトウェアのバージョン

TopHat2 v2.0.7, Bowtie 0.12.9, Cufflinks 2.1.1, Isaac Variant Caller 2.0.5, Picard tools 1.72

BaseSpace TopHat Alignment アプリ

TopHat Alignmentの実行

① Project WindowでLaunch Appを選択する

BaseSpace [®]	Dashboard	Prep Runs	Projects Apps	ش Public Da	? ata Help				۹ 🛙
< Projects : Enrie	chment Demo								
		% Launch app	Download Project	(f) Import	Share project	? Get link	Edit project	P Transfer Owner	Move to Trash
About		Analyses	0						
Analyses		Name	Last M	lodified ¥			Status	An	plication
Samples		sur ridifie	Last	iouniou v			Status		processor

② TopHat Alignmentの選択

TopHat Alignmentの実行 設定画面

App Session Name:	TopHat Alignment 05/16/2015 8:13:50	
Save Results To:	Select Project(s):	0
	Transcriptome Demo	×
Samples:	Select Sample(s):	●サンプルの選択を行う
	Select All	
	mRNA-UHRR-C2	× Strandedでサンプル調整
	mRNA-UHRR-C1	× された場合は忘れず
	mRNA-Brain-C6	
Reference Genome:	Homo sapiens/hg19 (RefSeq)	「 」 」 「 」 し ファレンスケノムと 遺伝子モデルを選択
	0	Homo sapiens/hg19 (RefSeq)
Options		Homo sapiens/hg19 (RefSeg)
Call Fusions:	🖉 🎱 オプションの設定	Homo sapiens/hg19 (Gencode)
Trim TruSeq Adapters:		Mus musculus/mm10 (RefSeq)
		Rattus norvegicus/rn5 (RefSeq)

TopHatアプリの実行結果: genes/transcriptsのFPKMリスト

FPKMリスト

1	A	A	D	E	F	G	Н	1	J		L	М	F
		1		gene_short						conf	FPKM_conf	FPKM_stat	
1	tracking_i 🔽 cla		gene_id 🔽	_name	tss_id 🛛 💌	locus 🛛 💌	length	🖌 coverage			_hi 🗾 💌	us 🔽	
2	OR4F5 -	tracking v	OR4F5	OR4F5	TSS14428	chr1:69090-7	-	-		0	0	ОК	
3	FAM138A -	tracking_	FAM138A	FAM138A	TSS8403	chr1:34610-3	-	-		3624	0.193449	OK	
4	DDX11L1 -	OR4F5	DDX11L1	DDX11L1	TSS14844	chr1:11873-1	-	-	0	80808	0.140593	ОК	
5	WASH7P -		WASH7P	WASH7P	TSS7514	chr1:14361-2	-	-	-	24459	2.8629	OK	
6	LOC729737 -	FAM138A	LOC729737	LOC729737	TSS18541	chr1:134772-	-	-	0.118328	54744	1.84944	ОК	
7	OR4F29 -		OR4F29	OR4F29	TSS12680	chr1:621095-	-	-	0.0000.000	81996	0.247348	ОК	
8	OR4F29 -	DDX11L1	OR4F29	OR4F29	TSS4943	chr1:367658	-	-	0.0893469	81996	0.232799	OK	
9	LOC1001322 -		LOC1001322	LOC1001322	TSS12303	chr1:323891-	-	-	2 55121	91286	0.353393	ОК	
10	LOC1001333 -	WASHITP	LOC1001333	LOC1001333	TSS12303	chr1:323891-	-	-	2.00101	79408	1.14489	OK	
11	LOC1001333 -	100729737	LOC1001333	LOC1001333	TSS13053	chr1:661138-	-	-	1,69886	08071	1.36847	ОК	
12	LOC1002880 -	200725707	LOC1002880	LOC1002880	TSS8709	chr1:700244	-	-	2.05000	.2079	10.8821	OK	
13	LINC00115 -	OR4F29	LINC00115	LINC00115	TSS18312	chr1:761585	-	-	0.153922	51458	2.25113	ОК	
14	LOC1001304: -		LOC1001304	LOC1001304	TSS20197	chr1:852952-	-	-		0	0.0826353	OK	
15	FAM41C -	OR4F29	FAM41C	FAM41C	TSS20841	chr1:803450	-	-	0.151429	6164	2.25037	OK	
16	KLHL17 -	0.0000000000	KLHL17	KLHL17	TSS17580	chr1:895966-	-	-	0.070040	3658	1.19359	OK	
17	PLEKHN1 -	LOC1001322	PLEKHN1	PLEKHN1	TSS12072	chr1:901876	-	-	0.2/2212	0	0	OK	
18	C1orf170 -	001001333	C1orf170	Clorf170	TSS8609	chr1:910578-	-	-	1 01169	0	0.022471	OK	
19	ISG15 -	2001001333	ISG15	ISG15	TSS16361	chr1:948846	-	-	1.01105	21552	3.46688	OK	
20	HES4 -	LOC1001333:	HES4	HES4	TSS26547	chr1:934341-	-	-	1.22598	57888	1.14685	OK	
21	RNF223 -		RNF223	RNF223	TSS16029	chr1:100712	-	-		0	0	OK	
4 4	▶ ▶ RZ100n	LOC1002880	27				L	4	10.9593				U

TopHatアプリの発現測定ポイント;

☆ 既知のご指定の(RefSeq or GENCODE) genes, transcriptsモデルのみでのカウント集計。
 ☆ 新規に予測しそれらのカウントなどは、Cufflinks&DEアプリが対応している。

TopHat Alignmentの実行結果

App Session TopHat Alignment 05/16/2015 8:13:50

Summary 1

	Reads	Number of Reads	% Total Aligned	% Abundant	% Unaligned	Median CV Coverage Uniformity	% Stranded
mRNA- Brain-C4	75/75	97,730,535	92.04%	15.69%	7.96%	0.55	99.36%
mRNA- Brain-C6	75/75	94,064,211	95.99%	15.21%	4.01%	0.55	99.11%
mRNA- UHRR-C1	75/75	83,374,339	96.31%	11.21%	3.69%	0.55	99.47%
mRNA- UHRR-C2	75/75	84,897,013	96.69%	9.99%	3.31%	0.54	99.46%

A T TopHat Alignment

Summary	
アライメント割合、	カバレッジの均一性など

Insert Length Distribution

Save Plot as SVG

Alignment Distribution

Save Plot as SVG

Alignment Distribution
Coding Exon. UTR, Intron, Intergenicへのアライメント割合

1.2 1.2 0.8 0.6 0.4 0.2 0.10 20 30 40 50 60 70 80 90 100 Normalized Position Along Transcript (5' to 3') Save Plot as SVG

<u>Transcript Coverage</u> 転写産物の5'末端から3'末端までのカバレッジの分布

TopHat Alignmentの実行結果

A > T TopHat Alignment

Alignment Distribution

Total RNAキットを用いた場合には IntronとIntergenic RegionへAlignment されるリードの割合が増える

-> 続くCufflinks&DEアプリの解析からは外し、実験へフィードバックするなど。

illumına[®]

TopHat Alignmentの実行結果

Variant Calls i

Homozygous reference	34,651,888	
Heterozygous	62,815	
Homozygous variant	10,439	
SNV	69,593	
Indel	3,710	
T _n /T _v	3.30	

変異コール	しの結果
-------	------

Important Files for Download

この段階での発現解析結果(FPKM)と変異解析結果(gVCF)もダウンロード可能

TopHatアプリの出力結果: 変異解析の結果

.gvcf (https://sites.google.com/site/gvcftools/home/about-gvcf)

TopHatアプリの出力結果: TopHat Fusion による融合遺伝子候補のレポート

Candidate fusion list

The following tables show fusion candidates where fusions are grouped based on their genomic locations (table description)

1. chr11-chr11 ff

ENSG00000228661 chr11 3875883 STIM1 chr11 3988781 1 17 0 1268.15

2. chr7-chr7 rr

POM121C chr7 75103969 CPED1 chr7 120716910 164 5 40 1007.13

3. chr9-chr9 rf

 ERP 44
 chr 9
 102861060
 ENSG00000227531
 chr 9
 113979792
 12
 2
 9
 454.56

 ERP 44
 chr 9
 102861065
 ENSG00000227531
 chr 9
 113995851
 62
 5
 45
 594.36

 ERP 44
 chr 9
 102861065
 ENSG00000227531
 chr 9
 113995851
 62
 5
 45
 594.36

 ERP 44
 chr 9
 102861065
 ENSG00000227531
 chr 9
 113998287
 13
 5
 6
 207.76

4. chr2-chr9 rr ALK chr2 29497964 PTPN3 chr9 112219678 22 2 17 585.07

5. chr3-chr3 rf DCBLD2 chr3 98526924 STXBP5L chr3 121037321 34 3 15 550.62

6. chr7-chr7 ff |HIP1 | chr7 | 75216226 | CFTR | chr7 | 117267574 | <u>18 3</u> | 14 | 498.61 |

7. chr6-chr6 ff POLR1C chr6 43485114 RSPH9 chr6 43623298 12 2 11 453.96

8. chr5-chr5 ff

ENSG00000037749 chr5 153569748 GALNT10 chr5 153674375 2 7 0 420.31

9. chr3-chr9 rf

 STXBP5L
 chr3
 121037319
 LPAR1
 chr9
 113792787
 1
 4
 1
 308.15

 STXBP5L
 chr3
 121037319
 LPAR1
 chr9
 113792787
 1
 4
 1
 308.15

 STXBP5L
 chr3
 121037319
 LPAR1
 chr9
 113792845
 1
 4
 1
 348.15

10. chr1-chr1 ff

GNG12 chr1 68173394 GNG12-AS1 chr1 68299026 2 4 0 250.97

肺がん細胞を用いたPTPN3-ALK融合遺伝子の検出

TopHat Alignment App のパイプライン

TopHat Alignment App のパイプライン各工程と出力ファイル形式

BaseSpace Cufflinks & DE アプリ

Cufflinks Assembly & DE App のパイプライン

ユーザガイドに記載されていない詳細は、 Cufflinks 本家マニュアルをご参考いただけます http://cufflinks.cbcb.umd.edu/manual.html

Cufflink Assembly & DE 設定画面

Cufflink Assembly & DE 設定画面

Cufflinksアプリ出力結果例

BaseSpace 🔝	🛎 🖃 🚔 🏦 ? Search	P [
 HiSeq 2000: TruSeq Stranded 	Total RNA (MAQC) : Cufflinks Assembly & DE 04/24/2014 6:18:02	
1 Analysis Info	Overview	Â
➡ Inputs	Control samples (UHR)	cont
Output Files	 RZ100ngUHR-i5-A1-01 RZ100ngUHR-i5-B1-02 	act u
	 RZ100ngUHR-i5-C1-03 RZ100ngUHR-i5-D1-04 	
Analysis Reports	Comparison samples (Brain)	
Cufflinks-Report	• RZ100ngHuBr-i6-F1-02	
	 RZ100ngHuBr-i6-G1-03 RZ100ngHuBr i6 H1 04 	
	FPKM tables: Genes / Transcripts	-

Cufflink Assembly & DE 実行結果

n	-	-	co i	200	in.	1.1	- 4	
н,	-	-			1.1	11/		

	Control	Comparison	Merged
Gene Count	45,635	52,884	62,231
Transcript Count	87,392	96,262	119,726
Link to gene models	GTF result	GTF result	GTF result
Relation	to reference transcripts		
Equal (=)	44,934	45,437	46,093
Potentially novel (j)	18,903	20,155	31,453
Unknown, intergenic (u)	21,848	28,622	39,115
Overlap with opposite-strand exon (x)	1,361	1,674	2,459
Other	346	374	606

Differential Expression 1

Gene Count	62,225	
∆Gene Count	27,052	
Transcript Count	119,696	
∆Transcript Count	27,379	
CuffDiff results	differential gene expression, differential transcript expression	

発現量の差異が有意にみられた遺伝 子・トランスクリプトの数

Sample Correlation

Cufflinksアプリ出力結果例 (各サンプル毎 のFPKMリスト)

レポート中 に表え	示されるリン	ック→	FPKM tables: Genes/ Transcripts					コントロール 科			
実験群											
	A	В	С	D	E	F	G	Н	1	L	
			RZ100ngHuBr-	RZ100ngHuBr-	RZ100ngHuBr-	RZ100ngHuBr-	RZ100ngUHR-	RZ100ngUHR-	RZ100ngUHR-	RZ100ngUHR-	
			i6-E1-	i6-F1-	i6-G1-	i6-H1-	i5-A1-	i5-B1-	i5-C1-	i5-D1-	
	tracking_id 💌	locus 💌	01.FPKM 💌	02.FPKM 💌	03.FPKM 💌	04.FPKM 💌	С1. FPKM 💌	02.FPKM 🔽	03.FPKM 💌	04.FPKM 💌	
	A1BG	chr19:588	0.877336	0.751462	0.791959	0.585528	1.50524	1.53949	1.55188	1.47948	
	A1BG-AS1	chr19:5886	0.55513	0.600267	0.613914	0.759932	0.917981	0.725987	0.650588	0.911839	
	A1CF	chr10:525	0.0290704	0.0371743	0.0366497	0.0397232	1.5566	1.41757	1.47525	1.46501	
	A2M	chr12:9220	20.9978	21.0211	21.3772	21.8963	69.719	69.1105	68.7974	68.2234	
	A2M-AS1	chr12:921	1.109	1.11787	1.14053	1.20411	0.423059	0.492536	0.558136	0.625029	
	A2ML1	chr12:8975	0.588004	0.647205	0.647019	0.654925	0.227352	0.22362	0.177014	0.177929	
	A2MP1	chr12:938:	0.102718	0.0951737	0.104212	0.0784438	0.0210817	0.0623826	0.0492729	0.0494728	
	A4GALT	chr22:4308	0.572499	0.428008	0.602284	0.502222	1.20627	1.53882	1.30407	1.41978	
	A4GNT	chr3:13784	0.001	0.0102621	0.0192562	0.00845964	0.0272833	0.0673127	0.001	0.001	
	AA06	chr17:318	0.001	0.418099	0.001	0.200904	0.001	0.001	0.001	0.001	
	AAAS	chr12:5370	4.76377	4.74959	5.36134	5.06117	16.708	15.4295	16.1457	17.2751	
	AACS	chr12:125	7.08618	6.89536	6.74231	6.57433	5.36705	5.31277	5.37381	5.52981	
	AACSP1	chr5:17819	0.0974901	0.0821632	0.115616	0.0609623	0.425995	0.62533	0.421505	0.411009	
	AADAC	chr3:15153	0.001	0.0114303	0.001	0.001	0.0303877	0.0449782	0.0532871	0.0356999	
	AADACL2	chr3:1514	0.001	0.001	0.001	0.001	0.016392	0.001	0.0191617	0.001	
	AADACL3	chr1:12776	0.001	0.001	0.001	0.001	0.0282973	0.0236709	0.0210312	0.00705382	
	AADACL4	chr1:12704	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	
	AADAT	chr4:17098	1.51119	1.79033	1.64225	1.58242	1.61109	1.81217	1.70279	1.65033	
	AAED1	chr9:9940	1.55632	1.95375	1.96462	1.78926	6.06918	5.9358	6.16553	6.31189	

レプリケート4ずつ

Cufflinksアプリ出力 – 遺伝子発現差異リスト

			ントロ	ール群	5	実験群		2 群間の差異			
					4				Filters Bog2tation		
1	A	В	С	D	E	F	G	н	Î.	E	
1	Test ID	Gene	Locus	Status	log2(contr	log2(com	log2(Ratic o	Value	Significant		
2	A1CF	A1CF	chr10:5255	OK	-3.86	1.41	-5.27	6.33E-05	TRUE		
3	A2ML1	A2ML1	chr12:897	OK	0.24	-2.41	2.65	6.33E-05	TRUE		
4	AACSP1	AACSP1	chr5:17819	ОК	-2.33	-0.24	-2.1	6.33E-05	TRUE		
5	AAK1	AAK1	chr2:6968	ОК	3.98	1.63	2.35	6.33E-05	TRUE		
6	AATK	AATK	chr17:790	OK	4.99	0.29	4.7	6.33E-05	TRUE		
7	AATK-AS1	AATK-AS1	chr17:790	ОК	-1.14	-3.72	2.58	0.003908	TRUE		
8	ABAT	ABAT	chr16:8768	ОК	6.29	2.64	3.65	6.33E-05	TRUE		
9	ABCA10	ABCA10	chr17:6714	OK	1.78	-2.55	4.32	6.33E-05	TRUE		
10	ABCA12	ABCA12	chr2:21579	ОК	-4.37	-0.49	-3.88	6.33E-05	TRUE		
11	ABCA2	ABCA2	chr9:13990	ОК	6.45	3.55	2.9	6.33E-05	TRUE		
12	ABCA3	ABCA3	chr16:232	ОК	4.98	2.5	2.48	6.33E-05	TRUE		
13	ABCA5	ABCA5	chr17:6714	OK	4.55	2.51	2.04	6.33E-05	TRUE		
14	ABCA6	ABCA6	chr17:670	OK	2.39	-4.04	6.43	6.33E-05	TRUE		
15	ABCA8	ABCA8	chr17:668	OK	3.89	0.04	3.86	6.33E-05	TRUE		
16	ABCA9	ABCA9	chr17:669	OK	2.15	-0.51	2.66	6.33E-05	TRUE		
17	ABCB5	ABCB5	chr7:2065	OK	-0.65	1.91	-2.56	6.33E-05	TRUE		

Cufflinksアプリ DEフィルタリング

Differential Expression Gene Browser

テクニカルノートより

www.illumina.com/content/dam/illumina-marketing/documents/products/technotes/technote-basespace-rna-seq.pdf

ユーザガイドにも詳細がございます

illumina

an SVG graphic or CSV table.

Filter Options

Log Ratio Cutoff

Significance

Status

Filter

Cufflink Assembly & DE 主要出力ファイルまとめ

FPKM File

検体ごとの遺伝子とアイソフォームの発 現量 (FPKM)を示す

	A	B	C	D	E	F	G	н	I	J	K	L	M
1	tracking_id	class_code	nearest_ref	gene_id	gene_short	tss_id	locus	length	coverage	FPKM	FPKM_conf	FPKM_conf	FPKM_status
2	TCONS_00	=	NR_046018	XLOC_000	DDX11L1	TSS1	chr1:11873	1652	0.272117	0.034342	0.008323	0.066588	OK
3	TCONS_00	=	NR_024540	XLOC_0022	WASH7P	TSS2909	chr1:14361	1769	53.0076	6.6898	6.1494	7.23408	OK
4	TCONS_00	=	NR_026820	XLOO_0022	FAM138F	TSS2910	chr1:34610	1130	0.186993	0.017702	0	0.060842	OK
5	TCONS_00	=	NM_001.005	XLOC_0000	OR4F5	TSS2	chr1:69090	918	0	0	0	0	OK
6	TCONS_00	=	NR_039983	XLOC_0022	LOC72973	TSS2911	chr1:13477	5474	83.2021	14.7687	14.0317	15.1068	OK
7	TCONS_00	=	NR_028325	XLOC_000	LOC1 001 3	TSS3	chr1 :32389	4370	15.2952	2.79301	2.51434	3.07599	OK
8	TCONS_00	=	NR_028327	XLOC_000	LOC1 001 3	TSS3	chr1 :32389	4273	69.0956	12.6173	12.1529	13.2492	OK
9	TCONS_00	=	NM_001 005	XLOC_000	OR4F3	TSS4	chrl :36765	939	0.464128	0.088148	0.029287	0.16108	OK
10	TCONS_00	-	-	XLOC_000	-	TSS5	chr1:56716	81	9590.67	2214.32	1.69758	5.26249	OK
11	TCONS_00	=	NM_001005	XLOC_0022	OR4F3	TSS2912	chr1:62109	939	0.464128	0.088148	0.029287	0.16108	OK
12	TCONS_00	=	NR_028327	XLOC_0022	LOC1 001 3	TSS2913	chr1:66113	4273	80.5244	14.7087	13.8115	14.9475	OK
13	TCONS_00	(j	NR_033905	XLOC_0022	LOC1 0028	TSS2914	chr1:69421	1863	11.8876	1.87101	1.55745	2.18688	OK
14	TCONS_00	=	NR_033908	XLOC_0022	LOC10028	TSS2915	chr1:70024	1371	72.1464	11.3553	10.4833	12.2305	OK
15	TCONS_00	-	-	XLOC_000	-	TSS6	chr1:71442	1082	3.82708	0.59841	0.381249	0.813331	OK
16	TCONS_00	-	-	XLOC_000	-	TSS7	chr1:71735	5853	7.04488	1.1731	1.05483	1.28976	OK
17	TCONS_00	-	-	XLOC_000	-	TSS8	chr1:72555	600	0.489808	0.093542	0.022917	0.183338	OK
18	TCONS_00	—	-	XLOC_000	-	TSS9	chr1:72657	1253	0.437604	0.069132	0.01 0974	0.120714	OK
19	TCONS_00	-	-	XLOC_0022	-	TSS2916	chr1:72882	1332	2.71018	0.404437	0.258078	0.547124	OK
20	TCONS_00	-	-	XLOC_0022	-	TSS2917	chr1:73022	1192	0.781542	0.179707	0.092284	0.265318	OK
21	TCONS_00	-	-	XLOC_000	-	TSS10	chr1:73215	1004	1.43742	0.227828	0.109565	0.34239	OK
22	TCONS_00	-	-	XLOC_0022	-	TSS2918	chr1:73265	839	2.06266	0.326929	0.161779	0.485338	OK
23	TCONS_00	-	-	XLOC_000	-	TSS11	chr1:73720	1233	0.974999	0.18565	0.089216	0.278799	OK
24	TCONS_00	-	-	XLOC_000	-	TSS12	chr1:73916	648	1.22792	0.231999	0.084879	0.360735	OK
25	TCONS_00	-	-	XLOC_0022	-	TSS2919	chr1:74834	780	5.34747	0.819321	0.475974	1.09298	OK
26	TCONS_00	-	-	XLOC_0022	-	TSS2920	chr1:75255	1 0 0 0	3.36759	0.343368	0.192505	0.481263	OK
27	TCONS_00	=	NR_024321	XLOC_0022	LINC00115	TSS2921	chr1:76158	1317	23.6665	2.47587	1.93153	2.7459	OK
28	TCONS_00	(J	NR_015368	XLOC_000	LOC64383	TSS13	chr1:76296	6385	2.15434	0.219462	0.15239	0.287112	OK

DIFF File

Control GroupとComparison Groupとの発 現量の比較

	A	В	С	D	E	F	G	Н	Ι	J	К	L	M	N
1	test_id	gene_id	gene	locus	sample_1	sample_2	status	value_1	value_2	log2(fold_c	test_stat	p_value	q_value	significant
2	TCONS_00	XLOC_0000	DDX11L1	chr1:11873	control	comparisor	NOTEST	0	0	0	0	1	1	no
3	TCONS_00	XLOC_000	OR4F5	chr1:69090	control	comparisor	NOTEST	0	0	0	0	1	1	no
4	TCONS_00	XLOC_000	LOC1 001 3	chr1:32389	control	comparisor	NOTEST	3.29E-05	0.004898	7.21688	0	1	1	no
5	TCONS_00	XLOC_0000	LOC1 001 3	chr1:32389	control	comparisor	NOTEST	0.001838	0	#NAME?	0	1	1	no
6	TCONS_00	XLOC_0000	OR4F3	chrl :36765	control	comparisor	NOTEST	0	0	0	0	1	1	no
7	TCONS_00	XLOC_000	-	chr1 56509	control	comparisor	OK	0	7524.08	inf	#NAME?	0.00015	0.001 006	yes
8	TCONS_00	XLOC_000	-	chr1 56717	control	comparisor	OK	32.3687	33.31.08	0.041395	0.734084	0.96835	0.974053	no
9	TCONS_00	XLOC_0000	-	chrl 56787	control	comparisor	OK	2.13267	4.19778	0.976964	2.71904	0.33815	0.437867	no
10	TCONS_00	XLOC_000	-	chr1:71442	control	comparisor	OK	0.380312	0.285006	-0.41619	-0.6112	0.43345	0.525401	no
11	TCONS_00	XLOC_000	-	chr1:71735	control	comparisor	OK	0.690636	0.456799	-0.59637	-0.99882	0.1692	0.319522	no
12	TCONS_00	XLOC_0000	-	chr1:71735	control	comparisor	OK	0.548731	0.980368	0.837225	0.714441	0.3312	0.431247	no
13	TCONS_00	XLOC_000	-	chr1:72555	control	comparisor	0K	0.262932	0	#NAME?	#NAME?	0.00075	0.004225	yes
14	TCONS_00	XLOC_000	-	chr1:72657	control	comparisor	NOTEST	0.049307	0.012572	-1.9716	0	1	1	no
15	TCONS_00	XLOC_0000	-	chr1:73215	control	comparisor	NOTEST	0.100724	0.025186	-1.99972	0	1	1	no
16	TCONS_00	XLOC_0000	-	chr1:73720	control	comparisor	NOTEST	0.12213	0.066124	-0.88517	0	1	1	no
17	TCONS_00	XLOC_000	-	chr1:73916	control	comparisor	OK	0.316741	0.34727	0.132754	0.1279	0.8932	0.916355	no
18	TCONS_00	XLOC_0000	-	chr1:75438	control	comparisor	OK	0.408285	0.613477	0.587434	0.600964	0.62025	0.691 092	no
19	TCONS_00	XLOC_0000	-	chr1:75485	control	comparisor	OK	0.10476	0.209833	1.00215	0.636658	0.50615	0.590781	no
20	TCONS_00	XLOC_000	-	chr1:75596	control	comparisor	OK	0.074714	0.371156	2.31257	3.06832	0.0024	0.011357	yes
21	TCONS_00	XLOC_000	LOC64383	chr1:75977	control	comparisor	OK	0	1.99597	inf	#NAME?	0.1257	0.271 095	no
22	TCONS_00	XLOC_0000	LOC64383	chr1:75977	control	comparisor	NOTEST	0	0	0	0	1	1	no
23	TCONS_00	XLOC_000	LOC64383	chr1:75977	control	comparisor	0K	0	0.71728	inf	#NAME?	0.1239	0.271 095	no
24	TCONS_00	XLOC_0000	LOC64383	chr1:75977	control	comparisor	OK	0.778959	0.025581	-4.92841	-1.50233	0.1939	0.3338	no
25	TCONS_00	XLOC_0000	LOC64383	chr1:75977	control	comparisor	OK	1.30685	0.463559	-1.49527	-1.31.08	0.09005	0.235133	no
26	TCONS_00	XLOC_000	LOC64383	chr1:75977	control	comparisor	0K	0	0.487844	inf	#NAME?	0.12395	0.271.095	no
27	TCONS_00	XLOC_000	LOC64383	chr1:75977	control	comparisor	NOTEST	0.030163	0.104867	1.7977	0	1	1	no
28	TCONS_00	XLOC_000	LOC64383	chr1:75977	control	comparisor	OK	0.448803	2.77794	2.62986	3.08724	0.0013	0.006788	yes
29	TOONS OF	XI 00.000	1.0064989	chrl (7597)	control	commerico r	ОK	0	9.07596	inf	#NIAME2	01249	0.271.095	00

GTF file

転写産物の構造を示すファイル

UCSC Genome Browserを用いた表示例

ステップ・バイ・ ステップの 説明 デモ動画

www.illumina.com/informatics/research/sequencing-data-analysismanagement/rna-seq-data-analysis.html

RNA-Seq BaseSpace Apps: A Guided Tour

See step-by-step instructions on how to navigate through the data analysis.

RNA-Seq BaseSpace Apps: A Guided Tour

Test ID	Gene	Locus	Status	log ₂ (uhr FPKM)	log 2 (brain FPKM)	log 2 (Ratio)	q Value	Significant
XLOC_000010		chr1 797247- 799101	ок	-10 000	-0.740	-9.260	0.000	~
XLOC_000011	•	chr1 800366- 801218	ок	-10.000	-0.630	-9.370	0.000	~
XLOC_000014	+	chr1.844861- 845337	ок	-0.540	-10.000	9.460	0.001	~
XLOC_000028		chr1:1100832- 1101478	ок	-0.920	-10.000	9.080	0.000	~
XLOC_000043	-	chr1:1314123- 1314431	ок	0.040	-10.000	10.040	0.003	~
XLOC_000062	GABRD	chr1 1950767- 1962192	ок	-1.350	6.950	-8.300	0.000	~
XLOC_000068	PLCH2	chr1 2398901- 2439211	ок	-0.690	4.460	-5.150	0.000	~
XLOC_000069	+	chr1:2462986- 2463443	ок	-10.000	-0.700	-9.300	0.002	~
XLOC_000070	3	chr1:2469531- 2469979	ок	-10.000	-0.870	-9.130	0.002	~
XLOC_000071		chr1:2470381- 2470659	ок	-10.000	0.630	-10.630	0.001	~
XLOC_000072	-	chr1:2472405- 2473064	ок	-10.000	-0.980	-9.020	0.000	~
XLOC_000073		chr1:2475553- 2477232	ок	-10.000	-0.540	-9.460	0.000	~
		chr1:2499662-						

さらなる解析のために 解析が具体的にどのように実行されたかは、AnalysisInfoの

			Log Filesに記載あ
BaseSpace	d Prep Runs Projects Apps	Public Data Help	
K HiSeq 2000: TruSeq Stranded	Total RNA (MAQC) : 🔚 TopHat Alignm	ent 10/07/2014 1:57:42	
	2 🖉 🛞 🖺		
1 Analysis Info	Analysis Info		
Inputs	Name	TopHat Alignment 10/07/2014 1:57:42	
Uutput Files	Application	TopHat Alignment Version: 1.0.0	
1 maria	Date started	Tuesday October 7th 2014, 8:58:04 pm	
Summary	Date completed	Wydnesday, October 8th 2014, 7:15:18 pm	
RZ100ngHuBr-i6-F1-02	Duration	22 hours 17 minutes 14 seconds	
RZ100ngHuBr-i6-H1-04	Session Type	Multi-Node	
RZ100ngHuBr-i6-G1-03	Size	81.95 GB	
RZ100ngHuBr-i6-E1-01 RZ100ngUHR-i5-D1-04	Status	Complete) (8 Nodes Complete)	
RZ100ngUHR-15-81-02			
RZ100ngUHR-i5-A1-01	Logs Log Files	0	
RELOUNGSCH-15-CI-05	Please view the Multi-Node detail:	page to see logs for this analysis.	

! BaseSpaceのインターフェイスにおいては、コマンドラインの利用と比較して、 簡単に最適なオプションを素早く選択できるように、変更可能な解析条件は 絞られ予めプリフィックスされ設計されている。

!しかし実際の使用オプションや詳細な工程の順を把握したい場合は、 ログファイルを追うことである程度これを把握できる。

さらなる解析のために 解析結果の生ファイルは Output Filesの配下にあり

Cufflinks Assembly	& DE 10/13/2014 20:12:40 Files : Cuffu	inks-Report Files	
	2 2 2		
1 Analysis Info	Output files		
Inputs	Name	Туре	Size
Output Files	comparison	Folder	223
Analysis Reports Cufflinks-Report	control	Folder	57 C
	differential	Folder	
	metrics	Folder	1223

! 全てのoutput項目がpdfレポート表示されているわけではない。 isoform毎の発現リスト等 実行結果の詳細は全てOutputFiles配下に置かれている。

! R/BioConductorなど他のツールで更に解析をすすめたり可視化を行う場合は このOutput Filesの中から様々なフォーマットのファイルをダウンロードして利用できる。

ご参考:ファイルのフォーマットについて

詳細は User Guide もご参考ください

RNA-Seq TopHat Cufflinks

RNA Express

シーケンシング以前: 実験デザインの解析結果への影響

RNA-Seq シーケンス前

RNA Seq の投入リード数の<u>大まかな</u>目安

mRNA ***	Differential Expression	10-20M Reads *
	Allele Specific Expression	50 – 100M Reads *
	Splice variation **	50 - 100M Reads *
	Complete Annotation	100M - 1B Reads *
	Transcript Based Assembly	50 – 200M Reads *

76bp~ x PE

- Based on human sized transcriptomes
- ** Also applies to RNA fusion transcripts in cancer
- *** Applies to poly A-selected libraries
 - Ribo-Zero, high quality RNA libraries: requires ~ 2X more reads
 - Ribo-Zero, FFPE libraries: requires ~ 4X more reads

解析ツール側での入力条件との兼ね合い

BaseSpace TopHat Alignmentの例

DEにおけるカバレッジの影響

BaseSpaceのCufflinks & DE assemblyアプリを利用

High Reproducibility with Low Inputs

- テクニカルレプリケーションは
 イルミナシーケンサーではほとんど
 必用ない
- バイオロジカルレプリケーション は推奨される

Correlation Coefficient 0.92-0.98

実験設計のガイドライン/標準/ベストプラクティス;

https://www.encodeproject.org/about/experiment-guidelines/#guideline

キットの特性からの検討

キット毎のリード分布

※ BaseSpaceのTopHatアプリのレポートからQC結果を抜粋

キット別の遺伝子上のマップ例

Upcoming Webinar

Next generation tools for gene expression profiling and gene fusion detection in FFPE tumor samples"

- Gary P. Schroth Ph.D., Distinguished Scientist, Illumina

- ▶ 10月 13日(火) 13:00~
- Register NOW!
 - <u>https://illumina.webex.com/illumina/onstage/g.php</u>
 <u>2f9bc840e5ddbfec22fcb31d25</u>

- イルミナシーケンシング
 - Accurate whole human genome sequencing using reversible terminator chemistry.
 Nature 456: 53-59 [PMID: 18987734]
- RNA-Seq, RPKM
 - Mapping and quantifying mammalian transcriptomes by RNA-Seq Nature Methods, Volume 5, 621 – 628 [PMID: 18516045]
- BaseSpace RNA-Seq アプリ
 - TopHat: discovering splice junctions with RNA-Seq.
 Bioinformatics. 2009 May 1;25(9):1105-11 [PMID: 19289445]
 - Cufflinks/Cuffdiff

Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010 May;28(5):511-5 [PMID: 20436464]

- Cuffdiff2 Differential analysis of gene regulation at transcript resolution with RNA-seq Nature Biotechnology 31, 46–53 (2013) [PMID: 23222703]
- TopHat-Fusion: an algorithm for discovery of novel fusion transcripts. Genome Biol. 2011 Aug 11;12(8):R72. [PMID: 21835007]
- STAR: ultrafast universal RNA-seq aligner.
 Bioinformatics. 2013 Jan 1;29(1):15-21. [PMID: 23104886]
- DESeq

Differential expression analysis for sequence count data.

Genome Biol. 2010;11(10):R106. [PMID: 20979621]

DESeq2: www.bioconductor.org/packages/2.13/bioc/html/DESeq2.html

http://www.ncbi.nlm.nih.gov/pubmed

ご参考サイト

イルミナ

http://www.illumina.com/landing/basespace-core-apps-for-rna-sequencing/ http://res.illumina.com/documents/products/technotes/technote-basespace-rna-seq.pdf http://support.illumina.com/help/BaseSpace_App_RNAseq_help/RNAseq_Apps_Help.htm http://www.illumina.com/applications/sequencing/rna.ilmn

業界フォーラム(英語)

http://seqanswers.com/ https://www.biostars.org/

日本語フォーラムサイト

http://cell-innovation.nig.ac.jp/wiki/tiki-index.php http://qa.lifesciencedb.jp/

ご参考:RNA-seq 典型プロセス と典型ソフト

http://cell-innovation.nig.ac.jp/wiki2

Thank You Questions?

© 2014 Illumina, Inc. All rights reserved. Illumina, IlluminaDx, BaseSpace, BeadArray, BeadXpress, cBot, CSPro, DASL, DesignStudio, Eco, GAIIx, Genetic Energy, Genome Analyzer, GenomeStudio, GoldenGate, HiScan, HiSeq, Infinium, iselect, MiSeq, Nextera, NuPCR, SeqMonitor, Solexa, TruSeq, TruSight, VeraCode, the pumpkin orange color, and the Genetic Energy streaming bases design are trademarks or registered trademarks of Illumina, Inc. All other brands and names contained herein are the property of their respective owners.

