イルミナウェビナー資料 2019.02.21

環境DNA分析に基づく 新しい生物調査法

山本 哲史 京都大学大学院理学研究科

環境DNA分析の概要

利点 生物の探索や捕獲が不要 生物同定の専門知識が無くても調査が可能

従来の調査法では困難だったことが可能

見つけにくい生物の確認

密度が低い生物の確認

形態に基づく同定が 困難な生物の確認

< 従来法との組み合わせると効率的に調査可能 >

分析の流れ

分析の流れ:採水

分析の流れ:採水

サンプルに触れる部分は漂白洗浄する

環境DNAの劣化を防ぐ

- ベンザルコニウム塩化物液の利用
- ・ろ過後は冷凍庫へ

(Yamanaka et al. 2016 Limnology 18:233–241)

分析の流れ:DNA抽出

Miya et al. 2015 Roy Soc Open Sci 2:150088 Uchii et al. 2016 Mol Ecol Resour 16:415–422

遠心 6000g 1分 Pure water 400µL ProteinaseK 20µL Buffer AL 180µL 56℃ 30分 6000g 1分 TE 300µL 6000g 1分 キットのプロトコル

分析の流れ:DNA抽出

ProteinaseK 20µL Buffer AL 200µL PBS(-) 220µL ● 56℃ 20分 ● 6000g 1分 ● キットのプロトコル

低吸着性チューブに保存

Miya et al. 2016 JoVE 117:e54741

分析の流れ:DNA解析

分析の流れ:多種同時検出

分析の流れ:MiFish 1st PCR

西己歹リ	MiFish U_f: ACACTCTTTCCCTACACGACGCTCTTCCGATCT NNNNNGTCGGTAAAACTCGTGCCAGC						
	MiFish U_r: GTGACTGGAGTT NNNNNNCATAG	TCAGACGTGTGCTCTTCCGATCT TGGGGTATCTAATCCCAGTTTG					
組成	KAPA HiFi ReadyMix 超純水 MiFish U_f (10µM) MiFish U_r (10µM) テンプレート	6 μL 3.28μL 0.36μL 0.36μL 2μl					
温度	95℃ 3分 (98℃ 20秒, 65℃ 15秒 72℃ 5分	 m 72℃ 15秒) 35サイクル					

PCR後にDNA精製 (AMPureビーズなど)し、濃度測定

Miya et al. 2015 Royal Society Open Science 2:150088

分析の流れ: MiFish 2nd PCR

Miya et al. 2015 Royal Society Open Science 2:150088

分析の流れ:MiFish ゲル切り出し

分析の流れ:MiFish 情報処理解析

MiFish Pipeline

Analyzing Fish eDNA amplified by MiFish primers.

Get Started Now 🔶

http://mitofish.aori.u-tokyo.ac.jp/mifish

Sato et al. 2018 Mol. Biol. Evol. 35:1553–1555.

地点1 2569 1758 0 0 地点2 722 56 854 747	• 地点1		種1	種 2	種 3	種4
	1111占2	地点 1	2569	1758	0	0
地点 2 522 50 654 745		地点 2	322	56	854	743
地点3 0 0 2014	111-153	地点 3	0	0	0	2014

分析の流れ:種特異的検出

種特異的検出の利点

低濃度DNAの検出が可能

定量PCRによりサンプル間比較が可能

分析の流れ:特異的プライマーの開発

オオサンショウオ 外来サンショウウオ CACCGGCGTTCTTCAACCATTGGCA... YACCGGCGTTCTTCAACCATTAGCA...

フォワードプライマ-

オオサンショウオ ...GCATTAACCACCTCCTTAATAATTTGAGCTCCT 外来サンショウウオ ...GCACTAATCACCTCCTTAATAATTTGAACCCCT リバースプライマー

種特異的プライマー&TaqManプローブを設計して、受託合成

Fukumoto et al. 2015 J. App. Ecol. 52:358–365.

分析の流れ:定量PCR

Environmental Master Mix 2.0 (Thermo Fisher)を使う場合

Environmental Master Mix AmpErase Uracil N-glycosylase プライマーF (18µM) プライマーR (18µM) プローブ (2.5µM) テンプレートor定量スタンダード 超純水 10 μL 0.1μL 1μL 1μL 2μL 4.9μL

定量スタンダード:

4段階程度の希釈系列を入れる。一般的には、増幅ターゲットとなる塩基 配列を組み込んだ人工合成遺伝子を使う(受託合成可能)。

分析の流れ:定量PCR

分析の流れ:分析の注意点

PCR前の処理とPCR後の処理を隔離されたスペースで行う

ネガティブコントロールで常にコンタミを検証する

• 各作業ステップでネガコンをとる

十分な数のPCRレプリケートをとる

- メタバーコーディングは8つ
- 定量PCRは3つ以上

Doi et al. 2019 Sci. Rep. in press 一部抜粋

研究事例:高密度調査

高密度調査によって調査地のスクリーニングが可能

秋田県・雄物川本流におけるゼニタナゴの環境DNA検出

- 河口付近から約1kmおきに99地点で採水(3日間)
- 2箇所で陽性
- 1箇所で実際に捕獲
- 産卵も確認

Sakata et al. 2017 Sci. Nat 104:100

環境DNA分析に基づく高密度調査は局所的、かつ生物量の 小さな生物の事前調査として有効。

研究事例:高密度調査

- 51河川102地点(10日間)
- MiFishによる多種同時検出
- 複数の淡水魚で既存の分布 境界が確認された

Nakagawa et al. 2018 Freshwater Biol. 63:569–580.

研究事例:近縁系統の塩基配列による区別

研究事例:アクセス困難な水域の調査

深海の魚類調査

マリアナ海におけるニホンウナギ環境DNA

- 9箇所
- 水深1000mまで100m間隔の採水
- 2箇所、水深200~400mで検出 Takeuchi et al. 2018 MEPS 609:187–196.
- グリーンランド沖の多種同時検出
 - 最大水深約900m
 - トロール調査と整合的な結果

Thomsen et al. 2016 PLOS ONE 11:e0165252.

研究事例:地点間で相対バイオマスを評価する

環境DNA量とバイオマスは相関する。

- 水槽実験
- コイ(淡水魚)・マアジ(海水魚)
- ・ 定量PCR

Takahara et al. 2012 PLOS ONE 7:e35868
 Jo et al. 2019 Ecol. Evol. 27:112
 Doi et al. 2015 PLOS ONE 10:e0122763

研究事例:地点間で相対バイオマスを評価する

野外の水域でも 環境DNA量はバイオマスと相関

- アユ(淡水魚)
- マアジ(海水魚)
- 内部標準DNAのスパイクイン によるメタバーコーディング での相対バイオマス評価

Doi et al. 2017 Freshwater Biol. 62:30–39.

Surface Filter series 1

Yamamoto et al. 2016 PLOS ONE 11:e0149786

まとめ

- 環境DNA分析は、DNA情報を介して間接的に生物を 観測する手法
- 従来の調査手法との組み合わせで生物調査を効率化
- ①種特異的検出と②多種同時検出
 ①高い定量性・微量DNAでも検出可能
 ②複数種を同時に検出
- コンタミ対策・ネガコン・レプリケート数
- 希少種の効率的調査・近縁種を区別して検出・アクセスの難しい場所の調査・バイオマスとの相関

環境DNA学会 http://ednasociety.org/

次回学会大会は11月3~4日に神戸大学で開催されます。