Background

Illumina has launched globally the **TruSight[™] Oncology 500 (TSO 500) tissue and circulating tumor DNA (ctDNA) assays**, which are for Research Use Only (RUO) and not for use in diagnostic procedures. These next-generation sequencing (NGS) assay kits are available for oncology research:

• The TSO 500 NGS assays enable in-house, pan-cancer comprehensive genomic profiling of tumor samples from FFPE tissues and plasma. TSO 500 contains DNA + RNA assay targeting 523 genes for assessment of all DNA and RNA variant types (TSO 500 ctDNA assay is a DNA only test). It supports identification of all relevant DNA and RNA variants implicated in various solid tumor types. In addition, it accurately measures key current immuno-oncology biomarkers: microsatellite instability (MSI) and tumor mutational burden (TMB).

This request for proposal (RFP) solicits investigator sponsored clinical research projects to evaluate potential applications of the TSO 500 tissue and ctDNA assays in North America and Asia Pacific Japan regions. Proposals should be focused on solid tumors, including lung, breast, colorectal, prostate, bladder, head-neck, gastric-esophageal, and cancers of unknown primary (CUP). Both retrospective and prospective studies will be considered.

This call for proposals seeks studies to assess:

- 1. The potential clinical utilities of decentralized comprehensive genomic profiling (CGP) of tumor tissue and liquid biopsy samples in localized and advanced stage cancers.
- 2. The potential improvement in diagnostic yield by testing tumor tissue and ctDNA simultaneously or sequentially (concordance between tumor tissue and plasma can be part of the study).
- 3. The detection of splice variant, gene fusion and signature biomarker, such as TMB, MSI, in tumor tissue and plasma.

We seek proposals that:

- Demonstrate the advantage of in-house (decentralized) CGP testing vs test-send-out for tumor tissue or ctDNA analysis or both.
- Exhibit the utility of liquid biopsy (e.g. faster turn-around time and time to therapy) in certain patient populations and disease indications, such as tumor accessibility or patient unfit for biopsy, limited tumor biopsy sample, and bone only metastasis (Studies that indicate the concordance or the reflex nature of tissue/liquid CGP assays in major cancer type).
- Establish the incremental benefit of tumor tissue testing in conjunction with liquid biopsy.
- Illustrate the benefit of splice variant and fusion gene detection with DNA + RNA workflow and gene signature biomarker identification with the large and comprehensive NGS panel.

We will not consider funding for:

- Studies that focus on cancer screening or disease monitoring using circulating DNA
- Studies that are in the hematological malignancy space

Timeline:

- Proposals are due by April 15th and/or September 15th.
- Proposals can be submitted immediately and will be evaluated on a rolling basis.
- Proposals will be reviewed by Illumina internal experts and be evaluated based on the scientific merits of the proposals, and a decision will be made by May 15th or October 15th, 2022.
- Study protocol is required at the time of contracting for accepted proposal

EVALUATING POTENTIAL APPLICATIONS OF ILLUMINA TruSight[™] Oncology 500 (NGS) ASSAYS

Request for Proposals, February 2022 (RFPONC2022)

Funding Requests:

In Scope	Out of Scope					
TSO 500 kits and sequencing reagents	Overhead cost					
Study cohorts are properly powered for the objectives	Resources to support activities related to the study such as sample collection, data collection, and data analysis.					
Have the expertise of running NGS assays (with equipment such as Covaris E220evolution, LE220, or ME220)	Core funding for research, lab and clinical personnel participating in the study.					
Proposals will be evaluated relative to similar activities in other regions and geographies. TSO 500 kits and sequencing reagent will be provided in kind relative to value.						

To Apply: Please submit the attached Study Proposal Template and email to iResearch@illumina.com:

TruSight™ Oncology 500 tissue and ctDNA assay description

TruSight[™] Oncology 500 (TSO 500) is a next-generation sequencing (NGS) assay that enables inhouse comprehensive genomic profiling of tumor samples. It supports identification of all relevant DNA and RNA variants implicated in various solid tumor types. In addition, it accurately measures key current immuno-oncology biomarkers: microsatellite instability (MSI) and tumor mutational burden (TMB).

TSO 500 has pan-cancer biomarker content aligned with key guidelines and clinical trials, and the DNA + RNA assay targeting 523 genes for assessment of all DNA and RNA variant types, plus MSI and TMB.

TruSight[™] Oncology ctDNA is a pan-cancer next-generation sequencing (NGS) assay that enables in-house comprehensive genomic profiling (CGP) from blood plasma.

The broad panel is designed with similar DNA content as its tissue counterparts (TruSight[™] Oncology 500 and TruSight[™] Oncology 500 High-Throughput), it detects SNVs, Indels, CNVs, fusion, and key immuno-oncology (IO) biomarkers.

TruSight™ Oncology 500 tissue and ctDNA assay Gene List

		Small Variants	;		Fusions + Splice Variants		
ABL1 CDC73 ALD2 CDCR3 ACVR1 CCKN1B ALCN12B CCKN1B ALCN12B CCKN1B ALCN12B CCKN1B ANRRD11 CCKN2B ANRRD21 CCKN2B ANRRD11 CCKN2B ARRP12 CH14 ARRP13 CCKN2B ARRP14 CL12 ARRP15 CCL2 ARRP16 CL2 ARRP17 CH14 ARR02B CRL2 ARRN CCLA AURR4 CTLA AURR5 CTLA AURR6 CTLA AURR5 CDX11 BCC2 DCCR1 BCC2 DCCR1 BCC2 DCCR1 BCC1 DDX11 BRC3 DMT18 BRC4 CDX11 BRC4 CDX11 BRC4 DMT18 BRC4 CDX11 BRC5 DMT18 BRC4<	EPARD EPARD ERRC3 EPRC3 ERRC4 EPRC4 ERRC5 EPRC4 ERRC6 EPRC5 ERRF11 ETS1 ETS1 ETS1 ETV6 EVS1 ETV6 EVS1 ETV6 EVS1 ETV6 EVS1 ETV6 EVS1 EVS1 ESTS1 FAXC2 FAXC2 FAXC3 FAXC3 FAXC4 FAXC2 FAXC5 FAXC3 FAXC4 FAXC4 FAXC5 FAXC5 FAXC6 FAXC6 FAXC6 FAXC6 FAXC6 FAXC6 FAXC7 FAXC6 FU1 FU1 FU1 FU1 FU2 FU3	GF20 IN-H4 GFBL11 IN-FRA GFIX2A IN-FRA GFIX2A IN-FRA GFIX2A IN-FRA GFIX2A IN-FRA GSK2B IN-FRA H373B IR51 H373A IR51 H373A IR51 H373B IR51 H373B IR51 H371H2C JAN1 H371H3C KCMAA H371H3L KLTS H374A LATS1 H374A LATS1 H457A LATS2	MENT PIC32 MT PIC43 MT PIC43 MT PIC44 PIC43 PIC44	R RF280462 SUC2 • RF204 SUC4 R RF708 SUC4 R RF708 SUC4 R RF708 SUC4 R UNX111 TCEB1 R VHX111 TCEB1 R VHX111 TCEB1 SDH4 TCF712 SDH2 TCF714 SUM2 TCF712 SH2 TCF712 SH2 SH2 SH2 SH2 SMA23 TCF24 SMA23 TCF24 SMA23 TCF24 SMA23 TCF24 SMA23 TCF24	- ABL1 - NOTCH1 - AKT3 - NOTCH2 - ALK - NOTCH3 - AR - NOTCH3 - AR - NOTCH3 - AR - NTR4 - BRAF - NTR42 - BRAF - NTR43 - BRCA1 - PAV3 - BRCA2 - PAV7 - CDK4 - POGFRA - SSF1R - POGFRA - SSF1 - SSF1		
Small Variants							
AKT1 CREI AKT3 CREI AKT3 CGF APC CTNI ARTC CTNI ARTD1A DDM BAP1 DDM BAP1 DDM BAP1 DDM BAP1 CF BRL2 FB BRL2 FB BRL2 FB BRL1 EFB BRL1 EFB BRH1 EFH CARD11 FAN CCND2 FAN CONTA FFD	BP GNAQ R GNAS B1 HNF1A 2 HRAS 13A IDH1 0 IDH2 4 JAPAG 1 KDR 2 MAP2K1 175A MAP2K2 175A MAP2K2 10 MCL1 2 MRL1 4 MP1 2 MRE11A 1 MR13	MSH0 RAD5 MITCR RAD5 MUTVH RAD5 MUTVH RAD5 MINTOR RAD5 MINTOR RAD5 MINTOR RAD5 MIN RB1 NFT RG1 NOTCH2 SMA NOTCH2 SMA PR4L82 SRC PR4L82 SRC1 PR4L81 TE12 PR4L81 TE12 PR4R31 TE12 PR0FRA TE12	IB IC ID 4 4 4 4 4 4 4 4 4 4 4 4 4	Amplification CHEK1 FGF5 CHEK2 FGF6 BGFR FGF7 BRBE3 FGF8 BRCC2 FGF10 BRCC2 FGF10 BRT FGF14 FGF1 FGF14 FGF3 FGFR2 FGF3 FGFR2	IS FGFR3 · NRAS FGFR4 · NRG1 JAV2 · POSFRB NRT · POSFRB RRAS · PHISCA LAMP1 · PHISCA LAMP1 · PHISCA MOMA · RAF1 MCT · RET MCC · RICTOR MCL1 · RPSHB1 MTCL · TFRC		

	NTRK1, NTRK2, NTRK3 (pan-cancer) MSI (pan-cancer)								
		V	9	•	٨	-	1		
Lung	Melanoma	Colon	Ovarian	Breast	Gastric	Bladder	Myeloid	Sarcoma	
AKT1 ALK BRAF DDR2 EGFR EGFR3 FGFR3 KRAS MAP2K1 MET NRAS PIK3CA PTEN RET TP53 TMB	BRAF CTNNB1 GNA11 GNA0 KIT MAP2K1 NF1 NRAS POGFRA PICSCA PTEN TP53	AKT1 BRAF HRAS KRAS MET MLH1 MSH6 NRAS PIK3CA PIK9 PIK0CA PIK9 SMAD4 TP53	BRAF BRCA1 BRCA2 KRAS PDGFRA FOXL2 TP53	AKT1 AP BRCA1 BRCA2 ERB82 FGFR1 FGFR2 PIK3CA PTEN	BRAF KIT KRAS MET MLH1 PDGFRA TP53	MSH6 PMS2 TSC1	ABL1 ASXL1 CALR CEBPA ETV6 EZH2 FLT3 GATA2 IDH1 IDH2 JAK2 KIT MPL NFM1 SF3B1 SRSF2 TP53	ALK APC BRAF CDK4 CTNNB1 ETV8 EWSR1 FOX01 GL1 KIT MDM2 MYOD1 NAB2 NF1 PAX3 PAX3 PAX3 PAX3 PAX3 PAX3 PDGFRA PDGFRA SDH6 SDH6 SDH6 SMARCB1 TFE3 WT1	