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Introduction
Recent successes in genome-wide association studies (GWAS) are 
evidenced by a steady increase in the number of scientific publica-
tions in the literature. This is likely to be a direct reflection of the level 
of efficiency with which investigators are now able to associate clinical 
phenotypes with SNPs. These successes have come despite complex 
challenges. Factors influencing the likelihood of a successful outcome 
include phenotypic heterogeneity, phenotype prevalence, popula-
tion stratification, the minor allele frequencies of the genetic elements 
driving phenotypic variance, and the availability of adequate sample 
quantities. 

In this context, it is not surprising that the choice of genotyping plat-
form draws significant attention and discussion. The selection strategy 
and quantity of markers, as well as the robustness of data gener-
ated by genotyping arrays, are known to affect study power and the 
likelihood of GWAS success. Illumina has designed its arrays with the 
intent of enabling investigators with a combination of high data quality 
and optimized genomic coverage. In many cases, this combination 
has provided the fastest path to significant associations and publica-
tion. This document demonstrates multiple measures of coverage and 
data quality and describes how each contributes to the performance 
of Illumina’s genotyping platform.

Analysis Methods and Results
Genomic Coverage

The fundamental requirement that a genotyping array must fulfill in a 
genome-wide association study is the ability to interrogate the locus or 
loci  associated with the trait of interest. The method of interrogation 
may be direct—by including the genetic variants responsible for the 
observed phenotypic differences—or indirect—by including SNPs that 
are in sufficient linkage disequilibrium with the causative variants to be 
used as surrogates for them1. 

While practical restrictions prevent the inclusion of every potential 
causative variant on a single array, the data from the International Hap-
Map Project provide a means to successfully implement the indirect 
approach. The tag SNP strategy applied in selecting the content of 
Illumina’s genotyping arrays was based on this approach2. The level of 
genomic coverage resulting from this strategy has been evaluated and 
described by publicly-funded studies3–5. Their findings demonstrate 
that the coverage Illumina’s strategy produces is unparalleled in the 
industry. 

The simplest and most commonly used measure to compare arrays is 
the global coverage that each provides. Global coverage is defined as 
the fraction of common SNPs (minor allele frequency ≥ 0.05) across 
the genome that are tagged by, or are in linkage disequilibrium with 
(typically with a threshold of r2 > 0.8), the SNPs on the array. The rela-

tive levels of global coverage across the tested arrays determined by 
University of Michigan researchers, M. Li and colleagues, are shown 
in Figure 1. The Illumina Human1M BeadChip offers the highest global 
coverage across each population tested, with 93% of common SNPs 
in the CEU population tagged at r2 ≥ 0.8 (Figure 1). While less than 
the Human1M, the coverage of the lower density HumanHap550 and 
HumanHap650Y BeadChips still offer a level of coverage in the CEU 
population higher than any competing array. (The HumanHap550 
BeadChip has been replaced by the Human610-Quad BeadChip, and 
the HumanHap650Y and Human1M BeadChips have been replaced 
by the Human1M-Duo BeadChip, with full backwards compatibility.)

Since the content on the arrays was based in part on the Phase 
II HapMap reference data set, it is a valid concern that coverage 
measures may be overestimated in the HapMap populations. This 
issue has been addressed by a number of studies and was found not 
to impact the validity of the previous conclusions2,3. Most recently, 
Bhangale et al. used resequencing data across multiple genes gener-
ated from both HapMap and non-HapMap CEU individuals to assess 
the coverage of arrays that had been previously calculated based 
on Phase II HapMap data. While the coverage levels calculated by 
this new method were reduced across all tested platforms relative to 
those determined based on the HapMap data, the Illumina Human1M 
and HumanHap650Y BeadChips maintained their markedly superior 
performance.

Efficiency 

While the superior coverage delivered by the Illumina Human1M Bead-
Chip was expected given the higher number of included tag SNPs, the 
coverage of the HumanHap650Y and HumanHap550 BeadChips was 
notably higher than that of competing arrays, despite including 29% 
and 41% fewer SNPs, respectively5 (Figure 1). These data highlight 
the efficiency of coverage provided by the tag SNP strategy. This is a 
critical factor to study design because the Bonferroni multiple-testing 
correction factor increases linearly with the number of SNPs assayed 
(0.05 × number of SNPs). Using fewer SNPs and more efficient con-
tent can lead to increased association scores.

Gene Coverage

While global coverage assessments are promising indicators of an 
array’s utility in a GWAS, the success of a study ultimately depends 
on whether the array includes the causative allele or a SNP that tags 
it. Since a substantial portion of causative variants are expected to lie 
within the coding and regulatory regions of genes, it is important to 
ensure that SNPs located within these regions are consistently tagged 
by an array. Figure 2 shows the number of genes covered by each ar-
ray tested as a function of coverage percentage across three HapMap 
populations. Consistent with the results from the global coverage anal-
ysis, the Illumina Human1M BeadChip delivers greater genic coverage 
in all three HapMap populations than competing arrays. Furthermore,  
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       Figure 1: Global Genomic Coverage
       Across Tested Array 
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Global coverage was calculated for the CEU population as the fraction of 
total SNPs that are tagged at r2 > 0.8, out of the total number of SNPs 
included on the array (adapted from Table 1 of Li et al., 2008). 

the HumanHap550 and HumanHap650Y BeadChips exhibit genic 
coverage higher than competing arrays in the CEU population. Thus, 
the tag SNP strategy provides an unparalleled advantage at the level 
of individual gene coverage, which directly impacts the likelihood of 
successfully identifying associations. 

Call Rate and Coverage Gaps 

The theoretical genomic coverage analyses described above are 
informative and useful for deciding which array to choose for a GWAS. 
However, the practical accuracy of these calculations depends on the 
assumption that each of the markers on the array consistently pro-
vides usable data. In practice, the actual number of calls depends on 
a balance set by the investigator between call rate (the total number 
of markers for which a genotype is generated) and the signal quality 
threshold used to prevent the inclusion of false calls. Assessing call 
rate as a function of included false calls is therefore critical  
to a meaningful comparison between arrays. 

Call quality can be inferred indirectly by measuring calls that are not 
reproducible between technical replicates or can be measured directly 
by comparing calls to a reference data set, such as HapMap data  
or parental genotypes. For the analysis shown in Figure 3, technical 
replicates of whole-genome genotyping data across two sets of trios 
were generated by an independent service provider using both an Il-
lumina Human1M-Duo BeadChip and a competing array composed of 
~900,000 SNPs (two sets of trios for ~2 million and ~1.8 million total 
calls, respectively). Unreproducible calls were defined as cases where 
different genotype calls were made at a locus between technical repli-
cates for an array. Figure 3 shows the call rate plotted as a function  

of the number of unreproducible calls that were included. The number 
of unreproducible calls that would need to be retained in order to 
reach any given level of genome coverage is substantially higher for 
the competing array than for the Illumina Human1M-Duo BeadChip. 

The starting level of coverage provided by an array’s content is 
certainly critical. However, the final call rate after data cleaning, the 
resulting effective genomic coverage, and the number of false calls 
included must all be taken into consideration during the design and 
interpretation of a GWAS. 

Miscalls and Data Interpretation

In addition to loss of coverage, discordant calls have the potential to 
negatively impact GWAS results in other ways. While achieving the 
highest possible call rate is desirable, including questionable calls at 
the expense of accuracy can quickly compromise the integrity of the 
results. The evidence of miscalls at even the highest levels of signal 
stringency (Figure 3) highlights the importance of a thorough exami-
nation of the reliability of data generated by an array platform before 
designing a study. 

A widely used metric to assess genotype call quality is the transmis-
sion disequilibrium test (TDT). A TDT can be used to gauge false call 
rate based on the average frequency with which the minor alleles 
of all SNPs across a genome-wide array deviate from 0.5, which is 
expected under the null hypothesis. Data generated from a set of trios 
using the Illumina HumanHap550, Human610-Quad, and Human1M-
Duo BeadChips are shown both directly as the frequency of minor 
allele transmission and as the chi-squared score that this proportion 
generates (Table 1). The degree of consistency (< 2.5% deviation) 
between the observed and expected minor allele transmission fre-
quencies is a clear indication of the accuracy of the calls generated by 
Illumina BeadChips. 

Another commonly used measure of genotype call quality is the 
frequency of observed inconsistencies of strict Mendelian inheritance. 
Different genotyping arrays have different rates and profiles of errors, 
which are important to examine closely when comparing arrays.  
Figure 5 depicts the quantities of various classes of Mendelian 
inconsistencies detected in the trio data set described in the call rate 
analysis. Interestingly, some classes of inconsistencies were overrep-
resented relative to the overall average. For example, in a substantial 
number of cases the mother and father were each called as homozy-
gous for the opposite allele (AA × BB) while the son was also called as 
homozygous (Figure 5, asterisk). This class had the highest incidence 
for both platforms, though it occurred over three-fold times more often 
on the competing array than on the Illumina Human1M BeadChip. 
There were also a substantial number of incidences where the mother 
and father were each called as homozygotes for the same allele while 
the son was called either a heterozygote or a homozygote for the 
other allele (Figure 5, diamond). Across all categories of Mendelian 
inconsistencies detected, the observed error frequency was markedly 
higher for the competing ~900K SNP array.

Given the evidence that some false calls are likely retained in the final 
data set to maintain an adequate call rate (Figure 3), it is useful to 
quantify any negative repercussions that these calls could have on 
data interpretation. While loss of power due to dropped calls, limita-
tions in genomic coverage, or other sources are always a concern 
with regard to type II errors (false negatives), the possibility of including 
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non-random miscalls capable of increasing the frequency of type 
I errors (false positives) is much more problematic. McCarthy and 
colleagues recently reviewed several challenges facing investigators 
running GWAS7. One issue addressed was the potential impact that 
miscalls included in the final data might have on the interpretation of 
the results. The authors state:

“Experience from the first wave of GWA studies has demon-
strated that scrupulous attention to detail is required through-
out because each stage is fraught with the potential for error 
and bias. Many of these errors and biases have the potential 
to generate extreme values for the association test statistic; if 
uncorrected, these can dominate the tails of the distribution, 
such that interesting true associations become lost in a sea of 
spurious signals. Efforts to prevent, detect and eradicate sources 
of error therefore remain a high priority in GWAS studies, despite 

continuing improvements in genotyping performance.” 

It is quite possible that among the false calls detected in the analysis 
depicted in figure 5 are cases such as those described by McCarthy 
and colleagues as high-risk for false positive generation. This type 
of uncertainty in a large experiment requires additional data cleaning 
exercises as well as more downstream validation. Beyond the genomic 
coverage, required sample sizes, and call rate offered by a genotyp-
ing array, confidence in the accuracy of the results is invaluable to a 
successful GWAS.

Conclusion 
In designing a GWAS, numerous variables have the potential to impact 
the success or failure of the study. Many of these factors are deter-
mined by nature, and the ability to adequately account for them in  
the study design varies depending on the phenotype and study popu-
lation. However, the degree of genomic coverage and the accuracy of 
genotype calls are largely determined by the genotyping array chosen 
for the study. Given the costs of a GWAS, careful consideration of the 
relative advantages and disadvantages offered by different platforms is 
an essential preliminary step in any study. 

The data reviewed here illustrate that the design of Illumina’s genotyp-
ing BeadChips provides clear, substantial advantages over competing 

arrays as gauged by the critical metrics of genomic coverage, genic 
coverage, call rate, signal quality, and call accuracy. These factors 
impact not only the quality and reliability of the data the platform 
generates, but also the time and resources required to clean and post-
process. Ultimately, the speed to publication benefits from careful array 
choice. 

The end result, more publications in less time when using Illumina 
BeadChips, is evidenced by in-the-field performance. Supplemen-
tary table 2 lists a sample of the rapidly growing number of studies 
(including their time to publication, GWAS odds ratio, and p-value) 
that substantiate the practical advantages of using the highest quality 
genotyping arrays8.

       Figure 2: Number of Covered at Various Coverage Thresholds

Four Illumina BeadChips and two competing arrays were compared by Li and colleagues5 in terms of the number of genes covered by SNPs on an array. Only gene 
regions containing ≥ 5 HapMap common SNPs were considered and coverage was evaluated at r2 > 0.8. 
Reprinted by permission from Macmillan Publishers Ltd: Eur J Hum Genet, 16:635-43, copyright 2008.

       Figure 3: Number of Included Miscalls 
       as a Function of Call Rate
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Two different arrays are compared in terms of the unreproducible calls 
generated at various call rates. Unreproducible calls were defined as cases 
where the genotype for a given SNP was differentially called between 
technical replicates on the same platform. Call rate was determined as a 
function of increasing quality score threshold and the resulting number of 
included unreproducible calls assessed. 
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       Figure 1: Transmission Disequilibrum Tests Demonstrate the Accuracy of Illumina Beadchip Genotyping Calls

McNemar x2 Frequency Minor Allele Transmission

Array Actual
Expected

(no errors)
Actual

Expected

(no errors)

HumanHap550 314 0–130 0.51 0.5

Human610-Quad 320 0–200 0.512 0.5

Human1M-Duo 503 0–400 0.501 0.5

       Figure 5: Mendelian Inconsistencies
       Detected Across Tri Data 
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The distribution of Mendelian inconsistencies identified within technical 
replicates across a set of three triads measured for each of two technical 
replicates on two array platforms. The number of occurrences for each 
category and the corresponding calls across mother, father, and son are 
shown. nc = no call
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